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Figure S1. Molecular landscape heterogeneity in human GBC and associated precancerous 

lesions. 

A. Representative histological images representing 7 tissue subtypes. 

B. Oncoplot representation of the mutational landscape of 15 specimens detected through bulk 

whole-genome sequencing and mutational variant calling. 

C. UMAP visualization of individual samples. 

D. The phases of the cell cycle and their distribution. Proportions across groups (left) and 

proportions across major cell types (right). 

E. Heatmap displaying average expressions of marker genes for all cell subsets (n=69). 
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Figure S2. Immunological profiles of immune cells. 

A. Gene expression heatmap within each cell cluster of T/NK cells. 

B. Proportion of detected TCR and CDR3 length distribution in CD8⁺T cells. 

C. Boxplots showing the distribution of CD4-Tfh, CD4-Treg, and CD8-Tex were dominant in 

GBC. 

D. Multiplex IHC staining confirmed cycling Treg in SCC, indicated by yellow solid arrows. 

E. Gene expression heatmap in each cell cluster of Myeloid cells. 

F. Boxplots showing the distribution of macrophage subsets among groups. 

G. Scatter plots showing significant expressed genes in each subtype of GBC compared with 

other tissue types. 

H. Proportion of Myeloid-Cycling among different groups. 

I. Multiplex IHC staining confirmed the presence of cycling macrophage in GP, indicated by 

yellow solid arrows. 
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Figure S3. Analysis of stromal cell subsets. 

A. Heatmap depicting the expression of representative genes within the fibroblast subpopulations. 

B. KEGG enrichment analysis of fibroblast subsets. 

C. Heatmap illustrating the expression of representative genes of endothelium. 

D. Boxplots showing the distribution of fibroblast subsets across groups. 

E. Boxplots showing the distribution of endothelium subsets among groups. 

F. Heatmap illustrating patterns of cell-cell interactions in ANT, GC, GA, and GBC. 

G. Heatmap illustrating patterns of cell-cell interactions in GP. 

H. Heatmap displaying the potential ligands from Fibro-iCAF and their corresponding targeted 

gene in Endo-Tip cell. 

I. Heatmap depicting relative expression across groups of the top predicted ligands expressed by 

Fibro-iCAF using scRNA-seq (left). Heatmap highlighting significant ligand-receptor pairs 

between Fibro-iCAF and Endo-Tip cells in scRNA-seq (middle). Top predicted ligands color-

coded by activity (right). 

J. Dot plot demonstrating the average expression of three candidate ligands associated with 

endothelium remodeling across different fibroblast clusters. 
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Figure S4. Deciphering subtype-specific regulatory programs in epithelium cells of 

gallbladder diseases. 

A. CNV inference analysis of malignant cells of GBC in an individual sample. Representative 

UMAP plot highlighting malignant cells (left). Representative heatmap of inferred CNV (middle). 

The CNV score and correlation for each cell (right). 

B. Heatmap showing the expression of representative genes of epithelium. 

C. Dotplot illustrating the GO enrichment results of each meta-program. 

D. Gene expression heatmap of DEGs (categorized in four clusters) in a pseudo-temporal order 

(left panel). GO analysis of upregulated genes in each cluster (right panel). 

E. Plot displaying the DEGs in each tissue subtype. Representative genes were indicated, and 

significant expressed genes were colored red. 
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Figure S5. Cell-cell interactome related to OLFM4 grouping. 

A. Heatmap of DSP assay proteins stratified by OLFM4 expression level. 

B. Box plots comparing CD45RO, OX40L, PD-L1, and STING expression between groups. 

C. Immunofluorescence staining representing the presence of TAM (CD68+CD1163+) and 

OLFM4 expression in an additional clinical sample cohort (Sample n=15, 3 randomly selected 

fields per sample, total fields n=45). 

D. Pearson correlation between the number of TAM and OLFM4+ cells in all fields. 

E. Putative signal sensed from malignant epithelium in GBC to TAM. Relative expression of top-

ranked ligands (left panel). Top predicted ligand colored by activity (middle panel [left]). 

Heatmap of ligand-receptor pairs (middle panel [right]). Genes activated by top predicted ligands 

(right panel). 

F. Putative signaling pathways mediating communication between TAMs and malignant 

epithelium in GBC. Relative expression of top-ranked ligands (left panel). Top predicted ligand 

colored by activity (middle panel [left]). Heatmap of ligand-receptor pairs (middle panel [right]). 

Genes activated by top predicted ligands (right panel). 
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Figure S6. OLFM4 regulated the tumor microenvironment in vivo. 

A. Dotplot depicting the expression of T-cell exhaustion markers across groups stratified by 

OLFM4 expression. 

B. Dotplot depicting the expression of PD-L1 across groups stratified by OLFM4 expression. 

C. Confirmation of OLFM4 expression level by western blot in OLFM4 knockdown GBC cells. 

D. Assessment of the effect of OLFM4 knockdown on GBC cell proliferation using a CCK8 

Assay. 

E. Subcutaneous injection of GBC-SD CTRL/sh-OLFM4 cells into NCG mice to obtain tumor 

xenografts. Tumor volume (right) and tumor weight (left). 

F. Gross morphology of tumors in the NCG model (CTRL, n=5; sh-OLFM4, n=5). 

G. Representative CD3 expression in CTRL/sh-OLFM4 groups detected by IHC. 

H. UMAP plots identifying 4 T-cell subsets in tumor-infiltrating lymphocytes of humanized mice. 

I. Heatmap depicting the protein expression from CyTOF analysis. 

J. Relative expression levels of a functional marker of NKT cells and CD161⁺ T cells across 

recruited CyTOF cohort. *P < 0.05 using a Wilcoxon test. 

K. Representative images of TAM in each group (*P < 0.05). 

L. The proportion of TAM in CD34+ humanized mice across groups. 
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Figure S7. The MAPK-AP1 axis was involved in OLFM4-mediated regulation of PD-L1 

A. Confirmation of PD-L1 mRNA Levels by quantitative RT-PCR in OLFM4-knockdown GBC 

cells. 

B. PD-L1 mRNA levels in GBC-SD CTRL/sh-OLFM4 under IFNγ stimulation or unstimulated 

conditions. 

C. PD-L1 protein levels in GBC-SD CTRL/sh-OLFM4 under IFNγ stimulation or unstimulated 

conditions. 

D. Elevated PD-L1 expression in GBC cell lines (GBC-SD [Top], NOZ [Bottom]) after treatment 

with OLFM4 (50 ng/mL). 

E. Time-dependent changes in PD-L1 mRNA levels in response to exogenous stimulation of 

OLFM4 (50 ng/mL). 

F. Elevated PD-L1 expression in multiple cancer cell lines after treatment with OLFM4 (50 

ng/mL). Colorectal cancer, SW620, and HT-29; gastric cancer, MGC803, and AGS; pancreatic 

cancer, SW1990, and PANC-1. 

G. Proportion of apoptotic GBC-SD cells following a 72-hour co-culture with activated PBMC, 

with or without Atezolizumab (10 µg/mL) treatment. 

H. Quantitative RT-PCR was performed to detect IL-2 (Interleukin-2), IFNG (IFNg), PRF1 

(perforin-1), GZMB (granzyme), and GNLY (granulysin) in activated PBMCs cocultured with 

GBC-SD CTRL/sh-OLFM4 cells, in the presence or absence of Atezolizumab (10 µg/mL) 

treatment. 
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I. PD-L1 protein levels in GBC-SD CTRL/sh-OLFM4 in the presence or absence of CHX (50 

μM). 

J. PD-L1 protein levels in GBC-SD CTRL/sh-OLFM4 under IFNγ stimulation or unstimulated 

conditions, in the presence or absence of tunicamycin (10 or 20 μM, 24 h). 

K. Enriched pathways of 129 common genes, related to Figure 7L. 

L. Western blot analyses of the levels of total MEK1/2, p-MEK1/2, total ERK1/2, p-ERK1/2, 

AP-1, and PD-L1 in NOZ treated with OLFM4 (50 ng/mL). 
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Supplementary materials and methods 

Cell lines 

GBC-SD, NOZ, SW620, HT-29, MGC803, AGS, SW1990, and PANC-1 were purchased 

from ATCC, authenticated through the STR characterization method, and regularly tested for 

Mycoplasma. Specifically, GBC-SD, MGC803, SW620, and AGS cell lines were cultured in 

RPMI 1640 medium, while NOZ, SW1990, and PANC-1 were cultured in DMEM. HT-29 cells 

were cultivated in McCoy's 5A medium. In all cases, the culture media were supplemented with 

10% fetal bovine serum and 1% penicillin and streptomycin. 

Sample processing 

Upon arrival at the laboratory, tissue samples were subjected to mechanical and 

enzymatic dissociation using the tumor dissociation kit (Miltenyi) and the GentleMACS Octo 

Dissociator with Heaters (Miltenyi). Resection samples were finely chopped and introduced into 

a GentleMACS tube containing 7.5 mL of enzyme mix. In comparison, core needle biopsies and 

fine needle aspiration samples were combined with 2.5 mL of enzyme mix in the same type of 

tube. After an incubation period of 15 to 30 minutes, which varied based on sample size and 

consistency, larger specimens were filtered through MACS SmartStrainers (70 μm) (Miltenyi) 

into 50 mL tubes. Subsequently, dead cells and cellular debris were effectively removed using the 

Debris Removal Solution from Milenyi Biotec. The samples were then subjected to 

centrifugation at 800g for 1 minute, and the resulting supernatant was carefully discarded. 

Following this, the cells were subjected to two wash cycles and resuspended in PBS containing 

0.5% bovine serum albumin, in preparation for library construction and sequencing. 
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OLFM4 knockdown  

Lentivirus for OLFM4 knockdown was produced and procured from Obio Technology in 

Shanghai, China. Cells, which were at a confluence level of 60-70%, were incubated in a growth 

medium containing appropriately diluted lentivirus along with polybrene. After 48 hours of 

transfection, the cells underwent puromycin selection at a concentration of 5 mg/mL to isolate 

and establish stable transfected cell lines. 

Real-time quantitative PCR 

Total cellular RNA was isolated using Trizol reagent from Invitrogen. This RNA was 

then reverse transcribed into cDNA utilizing Superscript III reverse transcriptase (Invitrogen) and 

random primers, following the manufacturer’s instructions. The resulting cDNA served as a 

template for amplifying target gene transcripts through real-time PCR, employing SYBR Green 

PCR Master Mix from Applied Biosystems, and an ABI PRISM 7300HT Sequence Detection 

System (also from Applied Biosystems). GAPDH was employed as a control for normalization. 

For a comprehensive list of primers, please refer to Table S7. 

Western blot 

The Western blotting analysis was carried out following established procedures. In brief, 

cells were lysed using IP lysis buffer from Beyotime Biotechnology in Shanghai, China, with the 

addition of 1 mM PMSF, and kept on ice for 30 minutes. Protein concentrations were quantified 

using the Pierce™ BCA Protein Assay Kit from ThermoFisher Scientific in MA, USA. Equal 

quantities of protein were loaded onto SDS-PAGE gels and subsequently transferred onto 0.22 

μm nitrocellulose membranes from Millipore in Cork, Ireland. The membranes were then 
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incubated with the respective primary antibodies overnight at 4°C, followed by incubation with 

IRDye 800 goat anti-rabbit antibody (LI-COR Biosciences, Lincoln, USA) for 1 hour at room 

temperature. Following the removal of unbound antibodies through washing, the labeled bands 

were scanned using the Odyssey® CLx Infrared Imaging System from LI-COR Biosciences in 

MA, USA. 

Multiplex immunofluorescence tissue staining 

For fluorescent multiplex immunohistochemistry analysis, a four-color fluorescence kit 

based on tyramine signal amplification (TSA) was employed according to the manufacturer’s 

protocol. In a nutshell, slides underwent deparaffinization and rehydration. Antigen retrieval was 

performed, followed by treatment with 3% H2O2 for 20 minutes. After washing, the slides were 

blocked using 1% BSA. Primary antibodies were applied, followed by the TSA solution. 

Following the final TSA cycle, DAPI was used for counterstaining at a dilution of 1:1000 for 10 

minutes. Photomicrographs of the stained sections were captured using the Leica TCS SP8 

system from Leica Biosystems in MA, USA. 

Assessment of T Cell Cytotoxicity 

T cell cytotoxicity was assessed based on the expression levels of IFNγ, CD107a, IL-2, 

perforin, granulysin, and Granzyme B. Peripheral blood mononuclear cells (PBMCs) from 

healthy donors were pre-activated using anti-CD3 (5μg/mL, Biolegend) and anti-CD28 (5μg/mL, 

Biolegend) for 2-3 days. Meanwhile, GBC-SD CTRL/sh-OLFM4 cells were seeded into a 12-

well plate and allowed to culture overnight. 
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The pre-activated PBMCs were introduced into the same well for co-culture with the 

tumor cells at a 4:1 ratio, and this co-culture was maintained for 72 hours. Following incubation, 

the suspended cells (primarily PBMCs) were collected, washed twice, and subsequently 

subjected to RNA extraction or analyzed using flow cytometry. The residual cells in the cell plate 

were washed twice with PBS and subjected to the TUNEL assay as per the manufacturer's 

provided protocol. Atezolizumab was added at a concentration of 10μg/mL to inhibit PD-L1 

function. 

In vitro tumorigenic surrogate analyses 

In the context of growth curves, numerous 96-well plates were seeded with 3,000 cells per 

well and cell density was assessed using a luminescent assay. Cell proliferation was determined 

by normalization against the cell density measurement on day 0. To evaluate chemoresistance to 

gemcitabine, GBC-SD cells were exposed to specified concentrations of gemcitabine for 72 hours. 

Regarding the migration assay, GBC-SD CTRL/sh-OLFM4 cells were positioned in the upper 

chamber. In contrast, for the invasion assay, Matrigel-coated membranes were employed to 

replicate the extracellular matrix environment. Following a 24-hour incubation period, non-

invading or non-migrating cells were removed, and the remaining cells on the lower side of the 

membrane were stained and quantified. 

Mouse xenograft models 

All animal experiments adhered to NIH guidelines and were approved by the Ethics 

Committees of Eastern Hepatobiliary Surgery Hospital (EHBH) (No. DWLL-004). Adult female 

NCG mice (NOD-Prkdcem26Cd52Il2rgem26Cd22/NjuCrl; 6–8 weeks old) were procured from the 
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Nanjing Biomedical Research Institute of Nanjing University. They were randomly allocated into 

experimental groups. GBC-SD CTRL/sh-OLFM4 cells at a concentration of 5×106 were injected 

into the right flank of NCG mice. Tumor size (calculated as length × width2 × 0.5) was assessed 

twice per week following the injection. PBMCs from healthy donors were activated and 

expanded as described previously1,2. On the day before tumor cell injection, PBMCs (1 × 107 

cells) were adoptively transferred to NCG mice via the tail vein. 

CD34+ humanized NCG mice were also obtained from the Nanjing Biomedical Research 

Institute of Nanjing University and were generated as outlined in previous reports. After 21 days 

of cell injection, CD34+ humanized NCG mice were humanly euthanized, and the tumor-

infiltrating leukocytes were isolated for subsequent CyTOF analysis. 

Mass CyTOF and data processing 

A set of pre-conjugated antibodies comprising 34 markers was procured from the supplier 

(cat no. 201321, 201307, and 201305 [Fludigm, USA]; Table S6). Tumor-infiltrating 

lymphocytes were isolated from freshly resected tumors of the huHSC-NCG model. These cells 

were stained for viability, using 5μM cisplatin, for 2 minutes, and then exposed to surface 

markers for 30 minutes at room temperature. Subsequently, the cells were fixed and subjected to 

analysis using a Helios mass cytometer from Fludigm, USA. The resulting files in. fcs format 

were uploaded to Cytobank (https://community.cytobank.org), where total T cells were manually 

gated, and events of interest were exported as .fcs files. The high-dimensional raw data 

underwent dimension reduction as part of the initial processing. A random sampling was 

conducted from each .fcs file using the cytofWorkflow package within the R software 

environment. 
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GeoMx DSP 

Formalin-fixed paraffin-embedded (FFPE) slides (4 µm) were baked at 60°C for 1.5 hours, 

and then deparaffinized and rehydrated as follows: 3×5 min in CitriSolv, 2×5 min in 100% 

ethanol, 2×5 min in 95% ethanol, and 2×5 min in double-distilled water. For antigen retrieval, 

slides were placed in a staining jar containing 1× citrate buffer with pH 6 at 25°C. The staining 

jar containing the slides was placed in a preheated pressure cooker and run at high pressure and 

temperature for 15 min. After carefully releasing the pressure, transferring the staining jar to the 

lab bench, removing the lid, and letting it stand for 25 min, the slides were then washed with 1× 

tris-buffered saline with Tween-20 (TBST) for 5 min. Blocking was performed by placing the 

slide in a humidity chamber in a horizontal position and covering it with sufficient Buffer W 

(NanoString). The slides were then incubated with Buffer W for 1 hour at 25°C in a humidity 

chamber. Ultraviolet (UV)-photocleavable oligo antibody sets (Immune Cell Profiling Core, 

Immuno-oncology (IO) Drug Target Module, Immune Cell Typing Module, and Immune 

Activation Status Module), containing 44 targets, were used for protein detection. A mixture of 

UV-photocleavable oligo antibody sets and morphological markers panCK, CD45, and OLFM4 

was diluted in Buffer W. The slides were removed from the humidity chamber and Buffer W was 

discarded then placed back into the humidity chamber and covered with diluted antibody solution. 

The humidity chamber was then transferred to a 4°C freezer and incubated overnight. Postfix was 

performed by removing the slide from the humidity chamber and carefully aspirating the 

antibody solution from the slide. The slides were washed for 3×10 min in TBST. The samples 

were covered with 4% paraformaldehyde and incubated for 30 min at 25°C in a humidity 

chamber. After incubation, the slides were washed for 2×5 min in TBST. For nuclear staining, 
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the slides were incubated with SYTO 13 for 15 min at 25°C in a humidity chamber and rinsed 

with 1× TBST. Finally, the slides were loaded onto the GeoMx instrument. 

Whole-slide image analysis employed HALO® image analysis software (version 

v3.3.2541.323, Indica Labs, Inc.). Quantification of PANCK+OLFM4+ Epithelium was 

conducted utilizing the High-Plex FL module. The OLFM4-Positive group was identified when 

PANCK+OLFM4+ cells constituted more than 0.2 of all cells in the region of interest (ROI) field 

of view, and conversely, deemed negative otherwise. 

ScRNA-seq data pre-processing 

The 5’-expression sequencing data, obtained off the machine, underwent demultiplexing 

and alignment to the human transcriptome (GRCh38) using Cell Ranger v2.1.1 (10x Genomics). 

The outputs for the 16 samples were aggregated to create a combined raw expression matrix, 

accomplished through the 'cell ranger aggression' function. 

The unique molecular identifier (UMI) count matrix was transformed into Seurat objects 

via the R package Seurat (version 4.1.1)3. Cells that met specific criteria, including detected gene 

numbers between 200 and 6,000, UMI numbers between 1,000 and 50,000, and a percentage of 

mitochondrial genes below 10%, were considered qualified and retained. Following quality 

control, a dataset consisting of 230,737 cells and 29,418 genes was prepared for downstream 

analysis. Raw gene expression values for each cell were normalized by dividing the total 

expression and subsequently scaled (multiplied by 10,000) and log-transformed using the 

'NormalizeData' function within the Seurat toolkit (UMI-per-10,000+1). 
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To mitigate batch effects, we employed the harmony algorithm4 to integrate samples 

based on patient samples. Essentially, we divided the combined Seurat object into a list of Seurat 

objects, with each dataset as an element, by executing the 'SplitObject' command. Each Seurat 

dataset within the list was normalized, and variable genes were identified using 'NormalizeData' 

and 'FindVariableFeatures' (SeuratObject, selection.method = "vst," features = 2,000). 

Subsequently, 'RunHarmony' was conducted, returning a Seurat object with an integrated 

expression matrix that had corrected batch effects. This object included a "harmony" assay with 

the integrated expression matrix, while the original uncorrected values were stored in the "RNA" 

assay, allowing flexibility in switching between them. The integrated expression matrix was 

employed for downstream analysis. Initially, we scaled the integrated data for principal 

component analysis (PCA) and UMAP visualization. Cells were subsequently clustered by cell 

type, rather than by batch effects. 

The ratio of Observed to Expected Cell Numbers in Pathogenesis Analysis 

We calculated the ratio of observed to expected (Ro/e) cell numbers within each cluster to 

dissect significant variances in cell distribution among various pathogenic states based on 

methods previously reported in the literature5. This quantification is pivotal for revealing 

deviations from expected distributions, assuming no specific association between cell types and 

pathogenic conditions. The corrected formula, in alignment with your code's functionality, is 

articulated as Ro/eij = Oij/Eij. Here Oij represents the observed number of cells of type i within 

pathogenesis j, while Eij denotes the expected number of cells, determined by: Eij =Ti×Pj/T. Ti is 

the total number of cells of type i across all pathogenic states, Pj is the total count of cells in 

pathogenesis j, and T signifies the total of cells observed. This computation effectively highlights 
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areas of enrichment or depletion in cell types within specific pathogenic contexts, essential for 

understanding cellular dynamics and contributions to disease pathology. 

Quantitative analysis of clonal expansion and transition 

The analysis utilized the scRepertoire6 package in conjunction with Seurat to integrate 

TCR sequencing with scRNA-seq data, enabling the assessment of clonal expansion in T cell 

subpopulations across various samples. By aggregating TCR sequences with metadata 

annotations like sample identity and pathogenesis, the study categorized clones based on 

frequency, from Single (appearing once) to Hyperexpanded (more than 250 appearances). This 

categorization quantified clonal expansion using the frequency distribution of TCR sequences. 

Moreover, the investigation focused on clonal transitions across different cell types and 

pathogenic states, leveraging scRepertoire to track TCR sequence presence and frequency. This 

approach facilitated a detailed analysis of clonal dynamics, comparing shared sequences among 

cell types and conditions to quantify clonal overlap and assess the impact of pathogenic stimuli 

on clonal populations. 

ROGUE analysis to assess cellular heterogeneity in scRNA-seq data 

To analyze cellular heterogeneity in scRNA-seq data using ROGUE7, begin by ensuring 

that the celltype_ROGUE metadata accurately reflects cell types, particularly refined epithelial 

categories according to pathology groupings. For ROGUE analysis, convert Seurat's sparse 

expression matrix to a dense format using Rcpp for compatibility. Execute the rogue function on 

this dense matrix, providing cell type labels, sample identifiers, and specifying parameters like 

platform for UMI counts and span for data smoothing. For visualization, if starting from pre-
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computed ROGUE scores, load them and use rogue.boxplot to create boxplots representing the 

variability of gene expression robustness across cell types. Incorporate statistical comparisons 

such as Kruskal-Wallis tests directly into the boxplots with stat_compare_means, highlighting 

significant expression robustness differences among cell types. 

Analysis of malignant cell heterogeneity using cNMF 

The process began with the preprocessing of scRNA-seq datasets using the Seurat 

package to isolate malignant epithelial cells based on specific metadata annotations. This subset 

was further refined by excluding cells from designated samples to focus on the most relevant 

cellular populations for analysis. Subsequent steps included a rigorous filtering process to remove 

genes associated with mitochondrial processes, ribosomal proteins, immunoglobulin genes, and 

other non-epithelial markers to prepare the data for computational non-negative matrix 

factorization (cNMF) analysis8. Each sample's expression data was exported into separate text 

files, tailored for cNMF compatibility. 

The core of our analysis involved executing a series of Python scripts to perform cNMF, a 

computational method designed to identify gene expression programs that underpin cellular 

heterogeneity and infer cellular states. This included data preparation, factorization, and results 

combination across varying component numbers to determine the optimal representation of 

cellular states. The integration of cNMF analysis aimed to reveal the underlying gene expression 

programs contributing to the observed cellular heterogeneity. Post-cNMF analysis, the results 

were analyzed within the R environment, focusing on quality control and the correlation between 

identified gene expression programs. We generated correlation heatmaps to evaluate the 

distinctiveness and consistency of these programs across the cellular landscape. Enrichment 
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analysis on genes associated with each program was conducted using tools like clusterProfiler 

against various databases, including gene ontology and KEGG pathways, to interpret the 

biological significance of the expression patterns. 

Integrative analysis of cellular trajectories in epithelium 

Our study deployed a comprehensive analytical framework combining Monocle2, 

CytoTRACE, RNA velocity analysis, and Partition-based graph abstraction (PAGA) to dissect 

the cellular trajectories and underlying gene expression programs within epithelial tumor cells.  

We began by collating data from various sources, including Monocle2 for cellular 

trajectories, CytoTRACE for estimating cellular states, and scRNA-seq data focusing on 

epithelial cells. The integration process entailed aligning datasets based on cell barcodes, 

ensuring a coherent foundation for subsequent analyses. Utilizing Monocle2, we visualized 

cellular trajectories, color-coded by pathogenesis, to delineate cellular progression pathways. Pie 

charts representing different cellular states further detailed the distribution of pathological 

conditions. CytoTRACE scores were incorporated to refine our understanding of cellular states, 

enhancing trajectory analysis by integrating a measure of cellular 'stemness' or differentiation 

potential. RNA velocity analysis was conducted to estimate the direction and speed of cellular 

transitions, adding a temporal dimension to our trajectory insights. This approach allowed us to 

predict future cellular states based on the current transcriptional dynamics. PAGA was employed 

to construct a graph abstraction of the data, providing a simplified yet informative representation 

of the complex cellular transitions and interactions within the dataset. This facilitated the 

identification of key branching points and transition pathways between cellular states. 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2023-331773–14.:10 2024;Gut, et al. He H



	 31 

Focused gene expression analysis, including BEAM to pinpoint genes associated with 

trajectory branch points and heatmap visualization of differentially expressed genes, highlighted 

distinct expression programs. These analyses were complemented by enrichment studies to 

elucidate biological functions and pathways characterizing each trajectory segment. Enrichment 

analyses leveraged GO and KEGG databases, alongside custom gene lists from unique and time-

differentially expressed gene compilations, to annotate the functional implications of identified 

gene expression patterns. 

Cell-cell interactome 

We utilized a method called CellPhoneDB9, tailored for single-cell transcriptome data, to 

investigate cell-cell communication. This method relies on a manually curated repository of 

interacting ligands and receptors. In essence, it infers potential cell-cell interactions by evaluating 

the expression of interacting ligand-receptor pairs between two clusters. For a gene encoding a 

receptor or ligand to be considered in downstream analysis, it should be expressed in more than 

30% of cells within a specific cluster. To assess the significance of a ligand-receptor pair between 

two clusters, a permutation test was performed by randomly assigning cluster labels to each cell 

1,000 times. An empirical P-value was determined by ranking the actual average expression of a 

given ligand and receptor pair in two clusters among the 1,000 permutations. 

For NicheNet analysis10, we generated cell type signatures by selecting the top 

differentially expressed genes (with an average Log2FC > 1) in cells isolated from tumors, 

including epithelium and TAMs. These signatures were then input into NicheNet to derive a 

comprehensive set of predicted ligands that modulate TME cell-type signatures. For example, to 

predict ligands modulating Endo-Tip cells, we employed the top differentially expressed genes in 
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Endo-Tip cells. In each case, we presented the top 20% of predicted ligands, based on regulatory 

potential, that also demonstrated significance in our single-cell RNA-seq ligand-receptor 

interaction analysis, as described earlier. These findings are depicted in Figure S3 and Figure S7. 

Quantitative correlation analysis of cellular composition 

In our analysis, we meticulously aggregated metadata that included sample identifiers and 

non-epithelial cell types to quantitatively evaluate the cellular composition within the 

microenvironment. A comprehensive table was constructed to count each cell type's occurrences 

across samples, facilitating the calculation of their percentage representations. This enriched 

dataset, augmented with additional metadata such as group and pathogenesis, served as the 

foundation for our correlation analysis. We employed Pearson's correlation tests to examine the 

relationships between the percentage representations of all cell types across samples. To ensure 

the reliability of our findings, we adjusted the p-values from Spearman's correlation tests using 

the Benjamini-Hochberg method, categorizing them into four significance levels. The resulting 

correlations were visualized on a heatmap, with Pearson's correlation coefficients depicted 

through a color gradient and the significance categories through point sizes. 

Hierarchical clustering of sample similarities based on cellular composition 

To analyze the similarities in cellular composition across samples within the 

microenvironment, we first organized our data to include sample identifiers, cell types, and their 

respective percentages within each sample. This data was transformed into a matrix where 

columns represented samples and rows corresponded to cell types, with values indicating the 

percentage of each cell type per sample. Utilizing the vegan package, we computed Bray-Curtis 
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dissimilarities within pathogenic groups (ANT, GC, GP, GA, GBC) to capture the ecological 

distances that underscore compositional differences between samples. Hierarchical clustering was 

then applied to these dissimilarity matrices using the 'average' linkage method, allowing us to 

identify clusters of samples with similar cellular compositions. The clustering results informed 

the ordering of samples, integrating these insights across all pathogenic conditions. 

Analysis of TCGA and bulk RNA-seq cohorts for stromal systems 

In the analysis of the TCGA cohort, we obtained preprocessed gene expression data 

(TOIL RSEM tpm) and clinical data for the TCGA Pan-Cancer (PANCAN) RNA-seq gene 

expression dataset from UCSC Xena (http://xena.ucsc.edu). Differential expression analysis was 

employed to determine specific markers for stromal cells, such as fibroblasts and endothelial cells, 

leading to the creation of signatures like SC1 and SC3 (Table S3). Subsequently, we conducted 

SC1/SC3-specific gene signature scoring, employing the GSVA package. Survival analysis, 

including Kaplan-Meier and Cox regression models, was conducted to evaluate the prognostic 

value of these stromal signatures in predicting patient outcomes. The pan-cancer approach 

allowed us to examine the generalizability and potential universal relevance of these stromal 

markers across different cancer contexts. 

GSVA was also conducted on bulk RNA-seq data of GBC from Pandey., et al11 to assess 

the activity levels of the identified stromal signatures. This analysis provided insights into the 

functional states of stromal cells within the tumor context. Enrichment of KEGG pathway 

analyses was performed on signature genes to uncover the biological processes and pathways 

enriched in each stromal cell category. Selected significant pathways were further visualized, 

emphasizing their relevance to stromal cell functions. 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2023-331773–14.:10 2024;Gut, et al. He H

http://xena.ucsc.edu/


	 34 

Data and code availability 

The raw FASTQ files from this study can be made available for scientific research 

purposes upon request while ensuring compliance with relevant privacy laws due to human 

patient privacy concerns. Additionally, the code used for all data processing and analysis is also 

accessible upon request. 
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