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 2 

Methods 20 

Study population  21 

The current study was based on the Tongji-Huaxi-Shuangliu Birth Cohort (THSBC), 22 

in which pregnant women aged 18 to 41 years were recruited during the early 23 

pregnancy when they presented to antenatal care clinics in in a local maternal and 24 

child health hospital during their early pregnancy. Exclusion criteria were 1) receiving 25 

infertility treatment (e.g., in vitro fertilization or intrauterine insemination); 2) 26 

reporting severe chronic or infectious diseases (e.g., cancer, HIV infection, or 27 

tuberculosis); or 3) were unable to or refused to sign the informed consent. The 28 

THSBC study was approved by the Ethics Committee of Tongji Medical College, 29 

Huazhong University of Science and Technology (No. [2017](S225)-1), and informed 30 

consent was obtained from all participants.  31 

 32 

In the present analysis, we included 4800 participants who had available ITS2 33 

sequencing data, dietary information and clinical records during their pregnancy. This 34 

dataset enables us to comprehensively profile the gut mycobiome among pregnant 35 

women and investigate potential determinants contributing to the variations of gut 36 

mycobiome. To examine how pregnancy impacts the gut mycobiome over time and 37 

investigate their potential associations with host metabolism, we established a sub-38 

cohort of 1059 participants, which included 514 women who gave birth to preterm 39 

(n=240), low birthweight (n=137), or macrosomia (n=216) infants, as well as 545 40 

randomly selected participants who did not experience the above three adverse 41 

pregnancy outcomes.  42 

 43 

ITS2 sequencing was performed for all the 4800 participants, while the shotgun 44 

metagenomics sequencing was performed for T1 samples within the established sub-45 

cohort (n=1059). Additionally, within the sub-cohort, 750 and 748 participants had 46 

ITS2 and 16S sequencing data available, respectively, for all trimesters. We also 47 

repeatedly measured serum metabolome throughout each trimester of pregnancy for 48 

participants in this selected sub-cohort using an LC-ESI-MS/MS system.  49 
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 3 

Sample collection  50 

Stool samples were collected and stored in ice boxes at the hospital or home by the 51 

participants under instructions and then transferred to the hospital to store at −40 °C 52 

within 24 hours. A detailed standard operating procedure was given to the pregnant 53 

women for instructions on fecal sample collection, temporary storage, and 54 

transportation to the hospital. Stocks of frozen fecal samples were transported by dry 55 

ice every 2 to 3 months to the laboratory in Huazhong University of Science and 56 

Technology and stored at -80 °C before further processing.  57 

 58 

Questionnaires and clinical data collection 59 

All participants completed a set of structured questionnaires on sociodemographic 60 

information, lifestyle and behaviors (such as cigarette smoking and alcohol drinking), 61 

diet (including recent daily intakes of major food groups), history of pregnancy and 62 

births, history of diseases and medications, and family history of diseases. 63 

Anthropometric and blood pressure measurements were collected on site using 64 

devices according to standard protocols. Body mass index (BMI) was calculated by 65 

dividing the weight in kilograms by the square of height in meters. Underweight, 66 

overweight and obesity was defined as BMI<18.5, BMI ≥ 24 kg/m2 and BMI ≥ 28 67 

kg/m2, respectively. Pregnancy complications (e.g., gestational diabetes mellitus) and 68 

birth outcomes were extracted from the electronic clinical records.  69 

 70 

Bioinformatic analyses 71 

Gut mycobiome analysis using ITS2 rRNA gene sequencing data  72 

Microbial DNA was extracted using the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, 73 

Norcross, GA, U.S.) according to manufacturer’s protocols. The final DNA 74 

concentration and purification were determined by NanoDrop 2000 UV-vis 75 

spectrophotometer (Thermo Scientific, Wilmington, USA), and DNA quality was 76 

checked by 1% agarose gel electrophoresis. The ITS2 hypervariable regions of the 77 

fungal ITS rRNA gene were amplified with primers ITS3F: 78 

GCATCGATGAAGAACGCAGC and ITS4R: TCCTCCGCTTATTGATATGC by 79 
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thermocycler PCR system (GeneAmp 9700, ABI, USA). Purified amplicons were 80 

pooled in equimolar and paired-end sequenced (2 × 250) on an Illumina NovaSeq 81 

platform (Illumina, San Diego, USA) according to the standard protocols by Majorbio 82 

Bio-Pharm Technology Co. Ltd. (Shanghai, China). 83 

 84 

The mean sequencing depth and its standard deviation for all samples were 118,177 85 

and 7955, respectively. It is worth noting that within the sub-cohort analyzed 86 

longitudinally, the number of sequencing reads remained relatively consistent across 87 

trimesters. Specifically, the mean (SD) sequencing depths were 117,906 (8350), 88 

118,882 (6125), and 116,688 (9198) for samples collected during the first, second, 89 

and third trimester of pregnancy, respectively. The demultiplexed ITS2 sequences 90 

were denoised and grouped into amplicon sequence variants (ASVs; i.e., 100% exact 91 

sequence match) using DADA2.[1] During the process, marker gene Illumina 92 

sequence data and low-quality regions of the sequences were detected and filtered. 93 

We trimmed 28 bases (primer and barcode) from the beginning of the sequences. We 94 

also truncated the sequences at the 245 bases as the quality dropped around position 95 

245 (median of quality score <30). The ASV features that were presented in only one 96 

sample were excluded as suggested by the Qiime2 tutorial, based on the suspicion that 97 

these may not represent real biological diversity but rather PCR or sequencing errors. 98 

The individual ASVs were taxonomically classified based on the UNITE (version 8.2, 99 

99%) database using the VSEARCH tool wrapped in QIIME2 (version 2021.2).[2] α-100 

diversity analysis was conducted through the q2-diversity plugin at the sampling 101 

depth of 10000. α-diversity was estimated by Shannon’s diversity index (or Shannon; 102 

a quantitative measure of community richness and evenness), Observed Features (or 103 

Richness; a qualitative measure of community richness), and Faith’s PD (or Faith’s 104 

Phylogenetic Diversity; a qualitative measure of community richness that incorporates 105 

phylogenetic relationships between the observed features).  106 

 107 

Gut bacteria analysis using 16S rRNA gene sequencing data   108 

For the 16S analysis, raw sequencing reads were merge-paired, quality filtered and 109 
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 5 

analyzed using QIIME2 (version 2021.2). As described above, we used DADA2 110 

denoised-paired plugin in QIIME2 to process the fastq files. We filtered the features 111 

that were present in only a single sample. The taxonomies of ASVs were subsequently 112 

determined using the Naive Bayes classifier trained on the Sliva_138 99% reference 113 

database. α-diversity analysis was conducted at the sampling depth of 10000. Α 114 

diversity of the gut bacteria was estimated by the indices the same as ITS2 data. 115 

 116 

Microbial functional profiling using metagenome data 117 

Microbial DNA extractions were carried out by a standardized CTAB procedure. 118 

DNA concentration was measured using Qubit dsDNA Assay Kit in Qubit 2.0 119 

Fluorometer (Life Technologies, CA, USA). For DNA library preparation, a total 120 

amount of 1μg DNA per sample was used. In addition, the NEBNext Ultra DNA 121 

Library Prep Kit (NEB, USA) was used following manufacturer’s recommendations 122 

and index codes were added to attribute sequences to each sample. The DNA samples 123 

were fragmented by sonication to a size of approximately 350 bp. Then, the DNA 124 

fragments were end-polished, A-tailed, and ligated with the full-length adaptor for 125 

Illumina sequencing with further PCR amplification. Thereafter, PCR products were 126 

purified (AMPure XP system) and libraries were analyzed for size distribution by 127 

Agilent2100 Bioanalyzer and quantified using real-time PCR. The clustering of the 128 

index-coded samples was performed on a cBot Cluster Generation System according 129 

to the manufacturer’s instructions. Lastly, sequencing was performed using the 130 

Illumina NovaSeq platform at Shanghai Personal Biotechnology Co. Ltd. (Shanghai, 131 

China) and 150 bp paired-end reads were generated. 132 

 133 

Next, raw sequencing reads were first quality-controlled with KneadData toolkit 134 

(v0.10.0): 1) to trim the reads by quality score from the 5′ end and 3′ end with a 135 

quality threshold of 20; 2) removed read pairs when either read was < 50 bp, 136 

contained “N” bases or quality score mean below 30; and 3) deduplicate the reads. 137 

Reads aligning to the human genome (H. sapiens, UCSC hg38) were removed via 138 

KneadData integrated with Bowtie2 tool (v2.4.5). 139 
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Functional profiling was performed with HUMAnN3 (v3.0.1), which maps sample 140 

reads against the sample-specific reference database to quantify gene presence and 141 

abundance in a species-stratified manner, with unmapped reads further used in a 142 

translated search against Uniref90 to include taxonomically unclassified but 143 

functionally distinct gene family abundances. We extracted the Uniref90 gene 144 

families of gut bacteria for downstream analyses. The Uniref90 gene families were 145 

then converted into relative abundances of unstratified pathway. 146 

 147 

Serum metabolomics profiling 148 

The sample extracts were analyzed using an LC-ESI-MS/MS system (UPLC, 149 

ExionLC AD, https://sciex.com.cn/; MS, QTRAP® System, https://sciex.com/) at 150 

Wuhan Metware Biotechnology Co., Ltd. (Wuhan, China). LIT and triple quadrupole 151 

(QQQ) scans were acquired on a triple quadrupole-linear ion trap mass spectrometer 152 

(QTRAP), QTRAP® LC-MS/MS System, equipped with an ESI Turbo Ion-Spray 153 

interface, operating in positive and negative ion mode and controlled by Analyst 1.6.3 154 

software (Sciex). Instrument tuning and mass calibration were performed with 10 and 155 

100 μmol/L polypropylene glycol solutions in QQQ and LIT modes, respectively. 156 

QQQ scans were acquired as MRM experiments with collision gas (nitrogen) set to 5 157 

psi. Declustering potential (DP) and collision energy (CE) for individual MRM 158 

transitions was done with further DP and CE optimization. A specific set of MRM 159 

transitions were monitored for each period according to the metabolites eluted within 160 

this period. The mass spectrum data were processed using Software Analyst 1.6.3. 161 

The metabolite identification was conducted by referencing standards in self-built 162 

metware database and public databases. The identified metabolites were matched with 163 

the parent ion mass-to-charge ratio, the fragment ion mass-to-charge ratio as well as 164 

retention time of their corresponding standards. The accuracy of metabolite 165 

characterization was classified into three levels, depending on the presence of isotope 166 

internal standards or matching score with the secondary mass spectrometry. The 167 

matching score>0.7 indicates the level 1 accuracy of metabolite characterization, 168 

while 0.5-0.7 and <0.5 indicate the level 2 and level 3 accuracy, respectively. 169 
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Statistical analysis 170 

Determinants of gut fungal composition among pregnant women 171 

The gut mycobiome data were analyzed at the genus level. We investigated the 172 

determinants of the gut fungal composition using the data collected from 4800 173 

participants during the first trimester, with each participant contributing only 1 stool 174 

sample. We used the vegdist function in the R package vegan to calculate the gut 175 

fungal Bray-Curtis dissimilarity matrix. The contribution of 20 environmental 176 

variables (including demographics, physiologic traits, diseases, and habitual dietary 177 

intakes) to fungal community variation was determined by PERMANOVA analysis 178 

using the function adonis2 in vegan.[3] We applied a complete data analysis strategy 179 

which excluded 19 participants with missing values for at least one of the 180 

environmental variables. The 4800 samples included in this analysis were sequenced 181 

in two separate batches. Therefore, we included the batch information as a covariate 182 

in the model, to adjust for potential batch effects. The p value was determined through 183 

999 permutations. 184 

 185 

Gut fungal and bacterial enterotype clustering 186 

The fecal samples (T1, n=4800; T2, n=890; T3, n=850) of ITS2 amplification were 187 

clustered into fungal enterotypes by using a partitioning around medoid (PAM) 188 

clustering method as those previously described.[4] Briefly, the samples were grouped 189 

into clusters with partitioning around medoid (PAM) based on the between-sample 190 

Bray–Curtis distance calculated at genus-level. The optimal number of clusters was 191 

determined by the silhouette index. The driver genus of each enterotype was 192 

determined as the genus with the highest relative abundance in the enterotype. The 193 

fecal samples of 16S amplification were clustered into bacterial enterotypes by using 194 

the method as that for bacterial enterotype.  195 

 196 

Dynamics of within-sample α diversity throughout each trimester of pregnancy 197 

This analysis was conducted in the established sub-cohort of 750 participants who had 198 

available gut fungi α diversity data for each trimester of pregnancy. We utilized 199 
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paired t-tests to assess the statistical significance of the changes in fungal α diversity 200 

between T1 and T2, as well as between T2 and T3 independently.  201 

 202 

Among the 750 participants included in the study to profile changes in gut fungal 203 

richness from T1 to T3, data on the estimation of consumption changes in food groups 204 

from T1 to T3 based on the FFQ were available for 639 participants. These food 205 

groups consisted of rice, steamed bread, noodles, vegetables, meat, eggs, milk, and 206 

fruit. The weight of each food group consumed per day was quantified based on the 207 

FFQ. We applied a linear regression model to estimate the association between the 208 

changes in richness from T1 to T3 and the respective food group. As covariates, we 209 

incorporated age, pre-pregnancy BMI, interval time between sample collections, 210 

parity, and gravidity. An FDR<0.05 was considered statistically significant.  211 

 212 

Loss rate calculations and discriminative genera identification  213 

Utilizing the available repeated measurements of gut fungi throughout pregnancy 214 

within the designated sub-cohort (n=750), we elucidated the loss rate for each fungal 215 

genus as the host underwent progression from T1 to T3. The loss rate for each fungal 216 

genus was determined by quantifying the proportion of the decline in frequency 217 

observed between T1 and T3.  218 

 219 

To assess the gut fungi enriched or depleted during early or late pregnancy, we 220 

conducted an analysis using paired t test analysis. This analysis was based on the 221 

examination of 465 genera that were detected at either T1 or T3. We transformed the 222 

taxa data using the centered log-ratio (CLR) method to address the compositional 223 

nature of the mycobiome data before we perform the paired t test analysis. To 224 

determine statistical significance, a false discovery rate (FDR)-adjusted p-value 225 

threshold of less than 0.05 was used.  226 

Additionally, we used these 465 fungal genera to construct a machine learning 227 

framework of LightGBM for predicting the trimester that the samples belong to.[5] 228 

The construction of prediction model was based on Scikit-learn (v0.15.2), and ten-229 
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fold cross validation (CV) was applied. To evaluate binary classification performance, 230 

receiver operating characteristic (ROC) curve analyses were conducted using the R 231 

package pROC. We used the SHAP (Shapley Additive exPlanations) to interpret 232 

predictions and the importance of each fungal genus to the prediction model is 233 

represented using Shapley values.[6] 234 

 235 

Quantification of intra-individual gut fungi compositional alterations  236 

We applied the vegdist function from the R package vegan to calculate the Bray-237 

Curtis distance based on gut fungal genus-level composition to assess intra-individual 238 

and inter-individual dissimilarities, respectively.[3] The sub-cohort, consisting of 750 239 

participants, was included in this analysis, as they had relevant data throughout each 240 

trimester of pregnancy. To determine the intra-individual distance, paired data was 241 

used, with the gut mycobiome data at T1 serving as the reference. Subsequently, a 242 

Bray-Curtis distance value was calculated for each participant in the sub-cohort, 243 

reflecting the extent of gut fungal compositional alterations. 244 

We fitted a multivariate regression model to examine the associations of pre-245 

pregnancy overweight status (category variable) or pre-pregnancy BMI (continuous 246 

variable, z-score transformed) with the extent of gut fungal compositional alteration 247 

within the established sub-cohort. The model was adjusted for potential confounders 248 

including age, time interval between sample collection, parity, antibiotics use and 249 

pregnancy complications. To examine the potential influence of gut fungal 250 

compositional alteration on adverse birth outcomes, multivariate regression models 251 

were constructed for preterm delivery, low birthweight, and macrosomia. The 252 

aforementioned potential confounders, along with the extent of gut fungal 253 

compositional alteration, were considered as exposure variables in these models. 254 

 255 

With regard to the divergence between individuals, the inter-individual distance was 256 

evaluated at various time points (i.e., T1, T2 or T3), separately. At each time point 257 

(e.g., T1 or T3), we calculate the average Bray-Curtis distance for each participant 258 

compared to all other participants. Thus, at each time point, each participant 259 
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possessed a distance value to reflect the similarity of her gut fungal composition with 260 

others.  261 

 262 

Dynamic trajectory of the core gut fungal genera and their relationship with host 263 

health status 264 

We conducted a longitudinal trajectory analysis for each core fungal genus in the 265 

established sub-cohort comprising 750 participants. For each core fungi, every 266 

participant had three measurements recorded at different time points, namely T1, T2, 267 

and T3. Therefore, the trajectory of a genus within an individual participant could be 268 

characterized by a vector consisting of three component values corresponding to these 269 

time points. Thereafter, we applied the vegdist function from the R package vegan to 270 

calculate the Canberra distance metric.[3] We performed PERMANOVA analysis 271 

using the function adonis2 in vegan, to assess the association of between-individual 272 

variation in the trajectory of each fungal genus with pre-pregnancy overweight status 273 

or adverse birth outcomes. The p value was determined through 999 permutations and 274 

an FDR-adjusted p value of less than 0.05 was considered indicative of statistical 275 

significance. 276 

 277 

Network analysis among gut fungal enterotype, functional pathways and host 278 

serum metabolites 279 

The network analysis was conducted among the participants who had available 280 

metagenome data during the first trimester of pregnancy. After excluding 35 281 

participants who had antibiotics exposure within 2weeks before stool sample 282 

collection, this analysis included a total of 1001 women. We firstly performed 283 

Kruskal-Wallis test to identify pathways whose distribution varied across fungal 284 

enterotypes. Thereafter, we performed post-hoc pair-wise comparison to defined 285 

which enterotype was enrich with the identified pathways. We fitted multivariate 286 

regression models to examine the associations of identified pathways with host serum 287 

metabolites. Here, we adjusted for potential confounders including age, gestation 288 

week, parity and pre-pregnancy BMI. Both the fungi and pathway data were 289 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2024-332260–11.:10 2024;Gut, et al. Fu Y



 11 

standardized using z-score before the regression analysis. An FDR-adjusted p value of 290 

less than 0.05 was considered indicative of statistical significance. 291 

 292 

Covarying relationship between gut fungi alterations and host metabolic changes 293 

We investigated the relationship between alterations in gut fungi and changes in host 294 

metabolism among 709 participants. These participants had available gut mycobiome 295 

sequencing data as well as serum metabolome data during each trimester of 296 

pregnancy. To address the compositional nature of the mycobiome data, we first 297 

applied the centered log-ratio (CLR) method to transform the taxa data. Next, we 298 

calculated the changes in each core fungus from T1 to T3 for each participant. 299 

Additionally, we calculated the changes in signal intensity of each serum metabolite 300 

from T1 to T3 for each participant. This enabled us to construct a matrix of gut fungi 301 

alterations and a matrix of host metabolic changes. To investigate the overall 302 

relationship between gut fungi alterations and host metabolic changes, we conducted 303 

Procrustes analysis in R using the ‘vegan’ R package. Procrustes. The p-value was 304 

generated based on 999 permutations.[3] 305 

 306 

Furthermore, we explored the covarying relationship between individual fungal 307 

genera and individual serum metabolites. For this analysis, we applied pairwise 308 

Spearman correlation analysis to each genus-serum metabolite pair in the 309 

aforementioned dataset. We considered a false discovery rate (FDR)-adjusted p-value 310 

of less than 0.05 as indicative of statistical significance. 311 

 312 

Pre-pregnancy overweight status impacts the metabolic changes during 313 

pregnancy 314 

For those participants with available serum metabolomics data throughout each 315 

trimester of pregnancy, we had constructed a matrix of host metabolic changes. Based 316 

on this matrix, the vegdist function from the R package vegan was utilized to calculate 317 

the Canberra distance metric.[3] To assess the contribution of pre-pregnancy 318 

overweight to the variation in metabolic changes between individuals, a 319 
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PERMANOVA analysis was conducted using the adonis2 function from the vegan 320 

package.[3] The significance of the results was determined using 999 permutations, 321 

and a false discovery rate (FDR)-adjusted p-value of less than 0.05 was considered 322 

statistically significant. 323 

 324 

To identify the distinct metabolic alterations in underweight and overweight pregnant 325 

women, we classified the participants into three groups based on their pre-pregnancy 326 

weight status: underweight, normal weight, and overweight/obese. Paired t-tests were 327 

conducted for each serum metabolite measured at T1 and T3 within each group. A 328 

FDR-adjusted p-value of less than 0.05 was considered statistically significant. 329 

Metabolic changes that were observed as significant solely among the underweight 330 

group, but not in the other groups, were defined as unique metabolic changes in 331 

pregnant women who were underweight prior to pregnancy. Similarly, significant 332 

metabolic changes observed solely among the overweight/obese group were defined 333 

as unique metabolic changes in pregnant women who were overweight/obese prior to 334 

pregnancy. 335 

 336 

Clinical impact of the gut mycobiome during pregnancy 337 

Logistic regression was used to evaluate the association between each core fungal 338 

genus, specifically measured during the first trimester of pregnancy, and the 339 

occurrence of pregnancy complications (GDM and PIH), as well as adverse birth 340 

outcomes (e.g., preterm delivery, macrosomia, and low birthweight). The model 341 

included age, pre-pregnancy BMI, parity as covariates. Specifically, when examining 342 

GDM or PIH as exposures, the model was adjusted for these variables. Additionally, 343 

when fungal genera were included as exposures, the fungal genera data were z-score 344 

standardized and the model was further adjusted for the gestational week 345 

corresponding to stool sample collection and the batch of sequencing. 346 

 347 

The analysis pertaining to pregnancy complications was conducted among 4606 348 

participants who possessed gut fungi sequencing data at T1 and information regarding 349 
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pregnancy complications. Likewise, the analysis concerning birth outcomes was 350 

performed among 4656 participants who had gut fungi sequencing data at T1 and 351 

information on birth outcomes. In both analyses, a complete data analysis strategy 352 

was implemented for variables with an exceptionally low occurrence of missing 353 

values, which consequently excluded 3 participants. For the variable "gestational 354 

week at stool sample collection," which was missing for 278 participants, a multiple 355 

imputation strategy was employed to impute these missing values. As a result, the 356 

logistic regression model for pregnancy complications consisted of 4603 participants, 357 

while the logistic regression model for adverse birth outcomes encompassed 4653 358 

participants. 359 

 360 

For pregnancy complications that exhibited significant associations with both gut 361 

fungi and adverse birth outcomes, we conducted mediation analysis to investigate the 362 

potential mediation effect of pregnancy complications on the link between the 363 

mycobiome and adverse birth outcomes. All statistical analyses were performed using 364 

Stata version 15 or R version 4.0.2.  365 

 366 
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Table S1: Characteristics of demographic, clinical and dietary factors stratified by early-pregnancy fungal enterotypes 

 Candida-dominated enterotype (n=907) Aspergillus-dominated enterotype (n=2723) Saccharomyces-dominated enterotype (n=1170) p* 

Age (year) 26.4 (3.6) 26.3 (3.6) 26.5 (3.5) 0.246 

Pre-pregnancy BMI 20.8 (2.9) 20.9 (2.9) 21.0 (3.1) 0.343 

Gestation week (wk) 10.2 (2.1) 10.2 (2.0) 10.1 (2.0) 0.374 

Time to delivery (day) 198.2 (16.1） 198.4 (15.5） 198.5 (15.6） 0.940 

Parity    0.013 

Primiparous 54.0% 57.3% 60.5%  

Overweight status    0.249 

Overweight or obese 21.8 19.2 19.7  

Normal weight 65.1 67.6 65.3  

Underweight 13.1 13.3 15  

Steam bread consumption    <0.001 

Ever (during the past 1 year) 46.9% 47.3% 54.2%  

Drinking     0.070 

Ever (during the past 1 year) 22.4% 22.0% 18.9%  

Tea consumption    0.024 

Ever (during the past 1 year) 34.0% 33.7% 29.5%  

Coffee consumption    0.057 

Ever (during the past 1 year) 24.6% 26.6% 23.1%  

Milk consumption    0.564 

never 19.2% 21.0% 19.7%  

<1 / day 42.9% 42.9% 42.1%  

≥1/day 38.0% 36.1% 38.2%  

* One-way ANOVA was applied to examine the significance of difference between groups for continuous variables, while chi-square test was 

used for category variables. 
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Table S2. The association between changes in consumption of food groups during pregnancy and alterations in gut fungal richness* 

Exposure (changes in consumption of food groups) Beta coefficient 95% CI p FDR 

Rice (per 50g/day) -3.20 (-5.75, -0.64) 0.014 0.11 

Steamed bread (per 1 bread/day) -6.38 (-12.9, 0.14) 0.055 0.15 

Noodle (per 50g/day) -5.06 (-10.63, 0.50) 0.074 0.15 

Vegetables (per 50g/day) 1.20 (-9.82, 3.22) 0.243 0.39 

Meat (per 50g/day) 1.45 (-3.48, 6.37) 0.564 0.64 

Egg (per 1 egg/day) 7.33 (0.26, 14.41) 0.042 0.15 

Milk (per 50g/day) 0.01 (-0.01, 0.03) 0.51 0.64 

Fruit (per 50g/day) -0.30 (-1.89, 1.29) 0.712 0.71 

* Covariates included in the regression model: age, pre-pregnancy BMI, interval time between sample collections, parity, and gravidity. 

639 out of the 750 with available data on the estimation of consumption changes in food groups from T1 to T3 based on the FFQ were included.  
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