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ABSTRACT
Objective  The remodelling of gut mycobiome (ie, 
fungi) during pregnancy and its potential influence on 
host metabolism and pregnancy health remains largely 
unexplored. Here, we aim to examine the characteristics 
of gut fungi in pregnant women, and reveal the 
associations between gut mycobiome, host metabolome 
and pregnancy health.
Design  Based on a prospective birth cohort in central 
China (2017 to 2020): Tongji-Huaxi-Shuangliu Birth 
Cohort, we included 4800 participants who had 
available ITS2 sequencing data, dietary information and 
clinical records during their pregnancy. Additionally, we 
established a subcohort of 1059 participants, which 
included 514 women who gave birth to preterm, low 
birthweight or macrosomia infants, as well as 545 
randomly selected controls. In this subcohort, a total 
of 750, 748 and 709 participants had ITS2 sequencing 
data, 16S sequencing data and serum metabolome data 
available, respectively, across all trimesters.
Results  The composition of gut fungi changes 
dramatically from early to late pregnancy, exhibiting 
a greater degree of variability and individuality 
compared with changes observed in gut bacteria. The 
multiomics data provide a landscape of the networks 
among gut mycobiome, biological functionality, serum 
metabolites and pregnancy health, pinpointing the 
link between Mucor and adverse pregnancy outcomes. 
The prepregnancy overweight status is a key factor 
influencing both gut mycobiome compositional alteration 
and the pattern of metabolic remodelling during 
pregnancy.
Conclusion  This study provides a landscape of 
gut mycobiome dynamics during pregnancy and its 
relationship with host metabolism and pregnancy health, 
which lays the foundation of the future gut mycobiome 
investigation for healthy pregnancy.

INTRODUCTION
During normal pregnancy, the maternal body 
undergoes dramatic physiological changes 
including immunological, hormonal and metabolic 
changes.1 2 Gut microbiota is considered as a virtual 
organ, and pregnancy status is associated with a 
profound alteration of the gut microbiota.3 4 It is 

hypothesised that the host can manipulate the gut 
microbiota to promote metabolic changes during 
pregnancy, ultimately supporting the growth and 
development of the fetus.4

WHAT IS ALREADY KNOWN ON THIS SUBJECT
	⇒ The human intestine is home to a diverse 
range of bacterial and fungal species, forming 
the ecological community that contributes to 
normal physiology.

	⇒ The human gut ecological community changes 
during pregnancy and plays a role in gestational 
dysmetabolic conditions.

	⇒ The remodelling of gut fungi during pregnancy 
and its potential influence on host metabolism 
and pregnancy health remains largely 
unexplored.

WHAT THIS STUDY ADDS
	⇒ The compositional changes of gut fungi from 
early to late pregnancy exhibit a greater degree 
of variability and individuality compared with 
changes observed in gut bacteria.

	⇒ The prepregnancy overweight status is a 
key factor influencing both gut mycobiome 
compositional alteration as well as the pattern 
of metabolic remodelling during pregnancy.

	⇒ Gut fungal Mucor during early pregnancy is 
positively associated with the risk of gestational 
diabetes mellitus and macrosomia.

	⇒ The multiomics data provide a landscape of 
the networks among gut fungi, biological 
functionality, serum metabolites and pregnancy 
health.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our findings indicate the dynamic nature of the 
gut mycobiome throughout each trimester of 
pregnancy and its impacts on host metabolism 
as well as pregnancy health.

	⇒ The manipulation of the gut fungi, a crucial 
constituent of the gut ecological community, 
holds great potential to serve as a novel 
approach to promoting a healthy pregnancy.
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It is important to note that the gastrointestinal tract is popu-
lated not only by bacteria, but also by fungi, known as gut 
mycobiome.5–7 However, fungal communities are still far less 
studied, compared with the extensive research conducted on 
the gut bacteria. As a major component of the gut microbiota, 
gut fungi are believed to play a crucial role in intestinal ecology, 
which is essential for host health.8 9 Recently, several studies have 
investigated the gut mycobiome in pregnant women, particularly 
among those who are obese or have been diagnosed with gesta-
tional diabetes mellitus (GDM).10–12 Although the sample sizes 
of these studies are limited, they provide crucial indications that 
the gut mycobiome may interact with host metabolism during 
pregnancy and influence the development of GDM. Therefore, 
the gut mycobiome has the potential to be an intervention target 
for promoting a healthy pregnancy.

Regarding the remodelling of gut mycobiome during preg-
nancy, however, the dynamics of gut mycobiome and its inter-
actions with gut microbial functionality, host metabolism, 
pregnancy complications and adverse birth outcomes have not 
been well studied. Here, we aim to comprehensively examine 
the underlying determinants for gut mycobiome based on a 
large-scale cohort of pregnant women (n=4800) and profile 
the dynamics of gut mycobiome based on a subcohort of deeply 
phenotyped participants (n=750). Moreover, leveraging the 
repeat measurements of multiomics and deep phenotypes in 
the established subcohort, we aim to provide a landscape of the 
networks among the gut mycobiome, gut microbial functionality, 
host metabolism and pregnancy health.

METHODS
Methods are available as online supplemental file 1.

RESULTS
Participant characteristics and gut mycobiome composition
This study was based on a prospective birth cohort study in 
central China: Tongji-Huaxi-Shuangliu Birth Cohort (THSBC). 
The THSBC recruited pregnant women who initiated prenatal 
care in a local maternal and child health hospital during their 
early pregnancy. Exclusion criteria were (1) Receiving infertility 
treatment (eg, in vitro fertilisation or intrauterine insemina-
tion); (2) Reporting severe chronic or infectious diseases (eg, 
cancer, HIV infection or tuberculosis); or (3) Were unable to or 
refused to sign the informed consent. In the present analysis, we 
included 4800 participants who had available ITS2 sequencing 
data, dietary information and clinical records during their preg-
nancy. This data set enables us to comprehensively profile the 
gut mycobiome among pregnant women and investigate poten-
tial determinants contributing to the variations of the gut myco-
biome. To examine how pregnancy impacts the gut mycobiome 
over time and investigate their potential associations with host 
metabolism, we established a subcohort of 1059 participants, 
which included 514 women who gave birth to preterm (n=240), 
low birthweight (n=137) or macrosomia (n=216) infants, as 
well as 545 randomly selected participants who did not expe-
rience the above three adverse pregnancy outcomes. ITS2 
sequencing was performed for the whole cohort involving 4800 
participants, while the shotgun metagenomics sequencing was 
performed for the first trimester (T1) samples within the estab-
lished subcohort (n=1059). Additionally, within the subcohort, 
750 and 748 participants had ITS2 and 16S sequencing data 
available, respectively, across all trimesters. Figure 1 provides an 
overview of the study workflow.

The age of the included participants (n=4800) ranged from 18 
years to 40 years (mean age, 26.4; SD, 3.6; table 1). More than 
half (57.5%) of these women were primiparous, while a majority 
of the remaining participants (41.3%) were multiparous. Prior 
to pregnancy, 947 women in the study were underweight and 
666 women were overweight or obese, while most of the women 
had normal body weights (n=3187). Age and parity are most 
important prepregnancy anthropometric factors contributing 
to the interindividual variation of gut mycobiome composition. 
Antibiotics use and dietary factors including steamed bread, egg, 
fruits, meat and tea consumption are also identified as significant 
contributors (figure 2A, p<0.05).

We observed three fungal enterotypes, including 
Saccharomyces-dominated enterotype (prevalence, 26.5%), 
Candida-dominated enterotype (18.8%) and Aspergillus-
dominated enterotype (54.7%, figure  2B,C). Parity and 
dietary factors including steamed bread and tea consumption 
are most important factors influencing the fungal enterotypes 
(online supplemental table S1). Specifically, women with a 
Saccharomyces-dominated enterotype during early pregnancy 
are more likely to be primiparous and have a dietary preference 
for consuming steamed bread within the past year. On the other 
hand, women with a Candida-dominated enterotype are more 
likely to have a lifestyle characterised by tea consumption within 
the past year. Of note, Saccharomyces, Candida and Aspergillus 
are the top three prevalent fungi, while the overall prevalence 
of gut mycobiome is very sparse (figure 2D,E). Specifically, we 
identify a total of 626 fungal genera at T1 (n=4800), and more 
than 96% (606 out of 626) of the identified genera have a prev-
alence lower than 40%. We consider those present among more 
than 40% of participants as core fungal genera (n=20) in subse-
quent analyses.

Compositional dynamics of the gut mycobiome during 
pregnancy in the longitudinal subcohort
We examined the compositional changes during pregnancy 
among the 750 participants who had ITS2 sequencing data avail-
able for all trimesters. The results showed a global shift in micro-
bial community composition from T1 to the second trimester 
(T2), but not T2 to the third trimester (T3) (online supplemental 
figure 1A,B). Inconsistent with prior knowledge that the gut 
mycobiome was relatively stable,9-10 our findings showed that as 
many as 68.5% of the 750 participants experienced shifts of the 
fungal enterotype during pregnancy (figure 3A). Specifically, the 
proportion of Saccharomyces-dominated enterotype increased 
(T1, 27.7%; T2, 31.7% and T3, 34.4%) and the Aspergillus-
dominated enterotype decreased (T1, 53.1%; T2, 49.3% 
and T3, 48.4%) from T1 to T3. The proportion of Candida-
dominated enterotype was relatively stable throughout the preg-
nancy (ranging from 17.2% to 19.1%).

The within-sample α diversity, including phylogenetic 
diversity and richness, was substantially reduced from 
T1 to T3, while the Shannon Index was not that dynamic 
(figure  3B–D). Moreover, the alterations in the within-
sample α diversity during pregnancy were very similar 
between women who gave birth to healthy infants and those 
who had preterm, low birthweight or macrosomia infants. 
Although dietary factors contributed to the gut myco-
biome compositional variation across participants, we did 
not observe significant associations between changes in the 
consumption of eight main food groups from T1 to T3 and 
decreased richness, after multiple testing correction (false 
discovery rate (FDR)>0.05, online supplemental table S2). 
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Therefore, the decreased richness was not likely to be driven 
by the change of diet during pregnancy.

We further profiled the extent of intraindividual shift 
in the composition in the context of interindividual vari-
ation. There was a wide range of intraindividual Bray-
Curtis distance from T1 to T2 or T1 to T3, most of which 
were even larger than the mean interindividual distance at 
a single time point (figure  4A, online supplemental figure 
1C). By contrast, the gut bacteria composition was much 
more conserved during pregnancy. We observed consistency 
between compositional alterations and the transition of 
enterotypes, as participants who exhibited a changed fungal 
enterotypes displayed considerably greater alterations in gut 
mycobiome composition (online supplemental figure 1D). 
Moreover, we found that women who were overweight or 
obese prior to pregnancy experienced much more variation 
of gut fungi from T1 to T3 compared with those who were 
underweight before pregnancy (figure 4B).

Dynamics of the individual gut fungal genus during 
pregnancy in the longitudinal subcohort
Among the 750 participants with gut mycobiome data available 
across all trimesters, we identified 410 genera in T1 samples. We 
then assessed the instability for each genus by calculating the loss 
rate from T1 to T3. For the 390 less prevalent fungi genera, the 
mean loss rate was as high as 97.6%, indicating extreme insta-
bility. By contrast, the 20 core fungi exhibited a mean loss rate of 
55.7%, with the Aspergillus, Candida and Saccharomyces being 
the most stable fungal genera (figure 4C).

To examine the remodelling of the gut fungi from early to 
late pregnancy, we found that 4 out of the 20 core genera were 
substantially altered (paired t test on centered log-ratio (CLR)-
transformed data between T1 and T3, FDR<0.05). Specifi-
cally, these genera were Aspergillus, Cladosporium, Penicillium 
and Candida, and all these fungal genera were depleted during 
late pregnancy compared with early pregnancy, which occurred 

Figure 1  Study workflow for profiling the gut fungi during pregnancy and exploring its relationship with host metabolism and health. To 
comprehensively profile the gut mycobiome-host interaction among pregnant women, we investigated potential determinants contributing to the 
variations of the gut mycobiome and explored the impact of gut mycobiome during early pregnancy on later pregnancy complications as well as 
birth outcomes in a large cohort involving 4800 pregnant women. To examine how pregnancy impacts the gut mycobiome over time and investigate 
potential associations between the gut mycobiome and host metabolism, we established a subcohort of 1059 participants, which included 
514 women who gave birth to preterm (n=240), low birth weight (n=137) or macrosomia (n=216) infants, as well as 545 randomly selected healthy 
controls. Within this subcohort, ITS2 sequencing was performed on 1059 stool samples collected during the first trimester of pregnancy, 890 during 
the second trimester of pregnancy and 850 during the third trimester. A total of 750 participants in this subcohort had ITS2 sequencing data available 
for all trimesters.
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in 40.4%–57.6% of women. Moreover, we used a machine 
learning algorithm (Light GBM) to discriminate T1 and T3 
samples based on the gut mycobiome composition (10-fold 
cross validation, area under the curve (AUC)=0.728, figure 4D). 
Using the interpretable Shapley Additive exPlanations (SHAP) 
value, we found that the core genera accounted for all the top 10 
discriminate fungal genera. Then we only used the core fungal 
genera for discrimination, and the performance was comparable 
(AUC=0.725, figure  4D). Most of these top discriminatory 
genera were over-represented in T1 and belonged mostly to the 
Saccharomycetales, Eurotiales or Capnodiales order of the Asco-
mycota (n=8). The relative abundance and prevalence of the 
top 10 discriminate genera during T1 and T3 were shown in 
figure 4E. Additionally, we conducted a classification analysis to 
distinguish between T1 and T2 samples, and between T2 and T3 
samples. The AUCs for these comparisons were 0.78 and 0.61, 
respectively (online supplemental figure 2A,B). Moreover, 8 out 
of the top 10 fungal genera that contributed significantly to the 
discrimination between T1 and T2 samples, were also top 10 
discriminant genera between T1 and T3 samples. These findings 
suggest that the gut mycobiome features of T2 and T3 samples 
are quite similar.

Key microbial functional pathways and host serum 
metabolites correlated with gut mycobiome
To examine the potential interaction between gut fungi and 
bacteria in the context of gut microbial functionality, we anno-
tated biological pathways mostly specific to bacteria based on 
the paired shotgun metagenomics data for T1 samples (n=1039) 

within the established subcohort. As the gut mycobiome clus-
ters to well-defined gut fungal enterotypes, we then investigated 
whether the matrix of pathways recapitulates this structure. The 
fungal enterotypes significantly contributed to the variations of 
the pathway matrix (p<0.05, R2=0.69%, online supplemental 
figure 2C), which may indicate an interaction between the gut 
mycobiome composition and the gut bacterial functionality. As 
expected, the bacterial enterotypes, identified following the 
same procedure as that of the fungal enterotypes, explained 
much more variations of the pathway matrix (R2=5.15%, online 
supplemental figure 2D).

To further characterise the relationship between fungal 
enterotypes and individual gut microbial functional pathways, 
we identified eight pathways whose distributions varied across 
enterotypes (FDR<0.05 with Kruskal-Wallis test). Specifically, 
most of these pathways (seven out of eight) including thiamin 
salvage IV (yeast), sucrose degradation IV, L-lysine biosynthesis 
I, superpathway of L-phenylalanine biosynthesis, peptidoglycan 
maturation, C4 photosynthetic carbon assimilation cycle and 
seleno-amino acid biosynthesis, were relatively abundant in 
the Saccharomyces-dominated enterotype, but less abundant 
in the Aspergillus-dominated enterotype. At the same time, 
sucrose degradation IV and seleno-amino acid biosynthesis were 
also abundant in the Candida-dominated enterotype, while 
preQ0 biosynthesis was abundant in both Candida-dominated 
enterotype and Aspergillus-dominated enterotype (figure  5A). 
Moreover, further regression analysis identified 95 significant 
associations between the identified pathways and 27 serum 
metabolites (FDR<0.05, figure  5A). More than two-thirds of 
the significant metabolites were bile acids (eg, chenodeoxycholic 
acid, isochodeoxycholic acid, deoxycholic acid, hyodeoxycholic 
acid and glycolithocholic acid), amino acid metabolites (eg, 
4-hydroxyhippurate and phenylacetyl-L-glutamine) and organic 
acid derivatives. (eg, 3-indolepropionic acid and indoleacrylic 
acid; figure 5A).

As we repeatedly measured the serum metabolome within the 
established subcohort, we profiled the metabolic alterations and 
explored its covarying relationship with gut fungi. We quantified 
794 identified metabolites, which belonged to diverse biochem-
ical classes, such as amino acids, lipids, nucleotides and carbo-
hydrates. Similar to the gut mycobiome, the serum metabolome 
also altered dramatically across trimesters, and the alteration 
between T1 and T2 was much larger than that between T2 
and T3 (figure  5B). The proportion of explained variance by 
trimester ranged from 1.17% to 11.89% for different classes of 
metabolites, with hormones and its related metabolites ranking 
at the top (figure 5C). Correlation analyses between individual 
core fungal genera and individual metabolites showed 30 cova-
rying relationships involving six genera and 27 serum metabo-
lites (FDR<0.05, figure 5D). Four out of the six identified fungi 
were annotated to the genus level resolution, including Clad-
osporium, Aspergillus, Rhizopus and Mucor. Specifically, Asper-
gillus, Rhizopus and Mucor covaried positively with three, eight 
and one metabolite, respectively, while Cladosporium covaried 
negatively with seven metabolites. Most of the Rhizopus-related 
metabolites belong to fatty acyl and the Cladosporium-related 
metabolites are mainly amino acids or its metabolites.

Similar to the finding that the intraindividual variation of 
gut mycobiome composition was different across underweight, 
normal-weight and overweight women, we found that being 
overweight prior to pregnancy significantly impacted the pattern 
of metabolic alterations from T1 to T3 (figure 6A). Subsequently, 
we performed an analysis to identify metabolites that exhibited 
significant changes dependent on the prepregnancy overweight 

Table 1  Characteristics of the study population

Total
(n=4800)

Subcohort 
(n=1059)

Without 
adverse birth 
outcomes*
(n=545)

With adverse 
birth 
outcomes
(n=514)

Age (SD) 26.4 (3.6) 26.5 (3.7) 26.2 (3.6) 26.7 (3.9)

Prepregnancy BMI (SD) 20.9 (2.9) 21.2 (3.1) 20.9 (3.0) 21.5 (3.2)

Weight gain (SD) 14.5 (5.0) 14.5 (5.2) 14.5 (4.9) 14.4 (5.4)

Gestation duration (SD) 39.2 (1.3) 38.6 (1.9) 39.5 (0.9) 37.8 (2.3)

Delivery mode

 � Vaginal 54.9% 49.5% 59.1% 39.4%

 � Caesarean 45.1% 50.5% 40.9% 60.6%

Pregnancy complications

 � Gestational diabetes mellitus 3.0% 8.3% 7.6% 9.1%

 � Gestation-induced 
hypertension

1.9% 2.1% 0.6% 3.8%

 � Anaemia in pregnancy 45.0% 39.2% 39.6% 38.8%

Adverse birth outcomes

 � Preterm 5.5% 22.3% 0 46.7%

 � Low birth weight 3.1% 12.9 0 26.7%

 � Macrosomia 4.9% 20.4% 0 42.0%

Gravidity

 � 1 35.0% 36.6% 40.9% 32.2%

 � 2 28.4% 28.5% 27.2% 29.8%

 � 3 19.0% 17.3% 16.3% 18.3%

 � 4 11.2% 10.2% 9.4% 10.9%

 � >4 6.4% 7.5% 6.3% 8.8%

Parity

 � 0 57.5% 60.7% 61.4% 60.0%

 � 1 41.3% 38.5% 38.3% 38.8%

 � ≥2 1.2% 0.76% 0.4% 1.2%

*Adverse birth outcomes of interest in this study are preterm delivery, low birth weight and 
macrosomia.
BMI, body mass index.
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status. Our findings revealed that 23 specific metabolites (eg, 
L-Glycine, L-Arginine, hexadecanedioic acid and carnitine) 
mainly belonging to amino acids and fatty acyl displayed signif-
icant alterations exclusively among underweight women during 
pregnancy (FDR<0.05, figure  6B). In contrast, 24 metabo-
lites (eg, L-Valine, L-Glutamine, 2-Hydroxycinnamic acid and 
4-Hydroxybenzyl alcohol) mainly belonging to amino acids and 
benzene derivatives were found to be significantly altered solely 
among overweight women (FDR<0.05, figure 6B). Thus, these 
metabolites likely contributed to the distinct pattern of meta-
bolic changes observed in underweight or overweight women.

Associations of gut mycobiome with pregnancy outcomes
By examining the prospective associations of each core 
fungal genera during early pregnancy with pregnancy 
complications in the whole cohort, we found significantly 
positive associations between Mucor and incident GDM 
(OR: 1.15, 95% CI 1.06 to 1.26; FDR<0.05), and positive 
associations of Wallemia with pregnancy-induced hyper-
tension (PIH; OR: 1.16, 95% CI 1.04 to 1.29; p=0.006, 
FDR=0.12, figure  6C), after adjustment for potential 
confounders. Moreover, we validated that both GDM and 
PIH were risk factors for adverse birth outcomes, including 
macrosomia and preterm delivery. Specifically, GDM was 
associated with higher risk of macrosomia (OR: 3.08, 95% 
CI 1.88 to 5.03; FDR<0.05) and preterm birth (OR: 3.15, 

95% CI 1.93 to 5.12; p<0.001, figure 6c). PIH was associ-
ated with higher risk of low birth weight (OR: 3.73, 95% 
CI 1.75 to 7.96; FDR<0.05) and preterm birth (OR: 2.57, 
95% CI 1.34 to 4.94; FDR<0.05, figure 6C).

Our analysis of the direct relationship between each 
core fungal genus and adverse birth outcomes in the whole 
cohort showed that the relative abundance of Mucor was 
positively associated with the risk of macrosomia (OR: 1.20, 
95% CI 1.07 to 1.35; FDR<0.05, figure 6C). We therefore 
performed a mediation analysis to test whether the effects 
of Mucor on the fetal overgrowth were mediated by GDM. 
We found that the gut fungal Mucor during early preg-
nancy was associated with macrosomia risk independently 
of GDM, which suggested that the Mucor and GDM might 
influence the risk of macrosomia through different path-
ways (figure 6D). We also explored the associations between 
the extent of gut mycobiome compositional alterations and 
adverse birth outcomes within the subcohort, which yielded 
no significant results. This finding may indicate that the 
shift of overall gut mycobiome composition was a widely 
shared phenomenon driven by pregnancy, regardless of birth 
outcomes. However, this did not preclude that the trajec-
tory of some individual gut fungus might be associated with 
pregnancy health, as we found significant dissimilarity in 
the trajectory of Mucor between pregnant women delivering 
preterm and non-preterm infants (FDR<0.05, figure 6E).

Figure 2  Profiling of the gut mycobiome composition and enterotypes among pregnant women. (A) Variance in the mycobiome composition 
explained by potential determinants was assessed through permutational multivariate analysis of variance (PERMANOVA) analysis. This analysis 
was performed based on 4800 independent samples collected during the first trimester. The value of p was determined through 999 permutations. 
Significance levels are indicated as follows: *, p<0.05; **, p<0.01; ***, p<0.001.(B) Clustering results of fungal enterotypes were visualised by 
principal coordinate analysis (PCoA). This visualisation was applied for all samples collected in the whole cohort. (C) The most abundant genera within 
each enterotype were shown. This analysis was based on all samples collected in the whole cohort. (D) The number of gut fungal genera that survived 
prevalence-based filtering at various cut-off thresholds was shown. This analysis was performed based on 4800 independent samples collected during 
the first trimester. (E) The distribution of prevalence of gut fungal genera was demonstrated. This analysis was performed based on 4800 independent 
samples collected during the first trimester.
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DISCUSSION
To the best of our knowledge, this is the first large-scale prospec-
tive cohort study characterising the determinants for gut myco-
biome and profiling the gut mycobiome dynamics among 
pregnant women. We validate three of the previously reported 
gut fungal enterotypes, and the shifts of gut fungal enterotypes 
are common during pregnancy. Our quantification analysis of 
compositional alterations throughout the pregnancy supports a 
much higher dynamic characteristic of gut fungi compared with 
the gut bacteria, and highlights that prepregnancy overweight 
status is a significant contributor to the extent of alterations in 
gut mycobiome composition. Moreover, we perform network 
analysis among gut mycobiome, biological functionality, serum 
metabolites and pregnancy health, identifying that Mucor is 
prospectively associated with both GDM and macrosomia risk.

Our previous work investigated the determinants and stability 
of gut mycobiome among middle-aged and elderly adults.9 Gut 
mycobiome composition was temporally stable while modulated 
by age, long-term habitual diet and host physiological states. A 
recent study also reported that age could significantly explain 
the interindividual variation of the human gut mycobiome and 
strongly affected the fungal enterotypes in several independent 
cohorts.13–15 In the present study, we found similar significant 
determinants of gut mycobiome, such as age and diet, but the 
mycobiome composition was not that stable during pregnancy. 
The most significant determinants for gut mycobiome among 
pregnant women included age, parity and dietary intakes of 

steamed bread, egg, fruits, meat and tea consumption. More-
over, the consumption of steamed bread was related to the 
Saccharomyces-dominated enterotype while drinking tea was 
associated with the Candida-dominated enterotype. Interest-
ingly, steamed bread is made by fermenting with Saccharomyces 
and the fungi are also involved in tea fermentation in China, thus 
the consumption of steamed bread or fermented tea may directly 
affect culture-independent gut mycobiome composition.

The present study provides evidence that gut mycobiome 
composition and structure are unstable and the well-defined 
gut fungal enterotypes could be altered over the course of the 
pregnancy. Taking the gut bacteria dynamics during pregnancy 
as a comparison, the longitudinal intraindividual distance for 
gut fungi is highly individualised and the mean intraindividual 
distance is much larger than that for gut bacteria composition. 
This finding was also true for stool samples collected among 
Human Microbiome Project volunteers, which showed more 
similar faecal bacterial community structure than faecal fungal 
community structure over time.16 The longitudinal samples of 
one individual’s faecal fungal mycobiome are even less similar 
to each other than those of another individual. Prior studies 
had shown differences in maternal gut bacterial composition 
by prepregnancy weight, indicating considerable effects of 
prepregnancy body mass index on gut microbiota composition 
during pregnancy.17–19 In the present study, we report that the 
prepregnancy overweight status has a substantial influence on 
the alterations in gut mycobiome composition during pregnancy. 

Figure 3  The shifts of gut fungal enterotypes and the dynamics of gut fungal α diversity during pregnancy. (A) Sankey diagram illustrating the 
shifts of gut fungal enterotypes from early pregnancy to late pregnancy. (B–D) The comparison of gut fungal α diversity across different trimesters, 
demonstrating the dynamics of gut fungal α diversity from early pregnancy to late pregnancy. Box plot centres show medians of the α diversity 
metrics with boxes indicating their IQRs, upper and lower whiskers indicating 1.5 times the IQR from above the upper quartile and below the lower 
quartile, respectively. Paired t test was performed to determine the significance of difference. Significance levels are indicated as follows: ns, p>0.05; 
*, p<0.05; **, p<0.01; ***, p<0.001. T1, the first trimester of pregnancy; T2, the second trimester of pregnancy; T3, the third trimester of pregnancy.
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These results together highlight the importance of body weight 
management before pregnancy for maintaining a stable gut 
microbial ecosystem during pregnancy.

We postulate that the considerable alterations in gut myco-
biome composition during pregnancy may be attributed to the 
extremely high loss rate of the less prevalent fungal genera. The 

less prevalent (prevalence <40%) fungal genera accounted more 
than 96% of the identified genera during early pregnancy, and 
these genera showed an average loss rate of 97.6% from T1 to 
T3. On the other hand, this finding may also support that most 
of the identified gut fungi are passengers other than residents 
during pregnancy. Nevertheless, we identified a group of core 

Figure 4  Discriminative gut fungal genera between early and late pregnancy. (A) The distributions of variation in gut fungal and bacterial 
composition over time (from T1 to T3) within individuals, as well as the differences between individuals at T1 or T3. (B) Comparison of the extent of 
gut mycobiome compositional alteration within individuals over time (from T1 to T3) stratified by prepregnancy overweight status. (C) Nightingale 
rose diagram visualising the proportion of participants whose core gut fungal genera were lost during later pregnancy in comparison to early 
pregnancy. (D) A machine learning framework, specifically LightGBM, was employed to train the trimester classifier on the gut mycobiome 
composition at T1 and T3. Subsequently, this trained classifier was used to predict the trimester to which the samples belong, employing a 10-fold 
cross-validation strategy and the corresponding area under the curve (AUC) values were presented. (E) The figure displays the relative abundance 
(left) and prevalence (right) of the top 10 gut fungal genera that contributed to the trimester classifier for T1 and T3.
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taxa for pregnant women in this study and about half of these 
core genera were also classified as core fungi for middle-aged 
and elderly individuals in our previous report and were consis-
tently detected in the Human Microbiome Project and Danish 

cohorts.9 16 Therefore, the identified core fungi are more likely 
to be resident commensals in the human gastrointestinal tract. 
This provides a rationale for future research focusing on these 
prevalent core fungi.

Figure 5  Interactions between gut mycobiome and host metabolism during pregnancy. (A) Network analysis among gut fungal enterotype, 
microbial functionality and host metabolome. The yellow and blue lines between gut fungal enterotype and functional pathways indicate enrichment 
and depletion of the pathways, respectively. The yellow and blue lines between functional pathways and serum metabolites indicate positive and 
negative associations, respectively. (B) Comparison on the overall metabolic pattern of serum samples collected during different trimesters of 
pregnancy. Principal coordinate analysis (PCoA) was employed, using Canberra dissimilarity, to examine the dissimilarities between all samples. 
Multivariate PERMANOVA analysis was performed to evaluate the extent to which trimester accounted for the variance in the overall metabolic 
pattern. The value of p was determined based on 999 permutations. (C) The extent of Canberra dissimilarity-based metabolic alterations during 
pregnancy for different classes of metabolites over time. To quantify these alterations, we assessed the explained variance of each class of metabolites 
by trimester using multivariate PERMANOVA. (E) Heatmap of covarying relationship between individual core fungal genera and individual serum 
metabolites from the first trimester to the third trimester. Spearman correlation analysis was performed between the changes in core gut fungi (CLR-
transformed) and changes in metabolites. Significance levels are indicated as follows: *, FDR<0.05; **, FDR<0.01. GHDCA, glycohyodeoxycholic acid; 
ICDCA, isochodeoxycholic acid; HDCA, hyodeoxycholic acid; CDCA, chenodeoxycholic acid; GLCA, glycolithocholic acid, DCA, deoxycholic acid.
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Prior studies have indicated host remodelling of the gut micro-
biome and metabolic changes during pregnancy, which may 
potentially impact maternal and infant health.4 20–24 The majority 
of these studies have primarily focused on gut or vaginal bacteria 
and metabolites, while very few studies investigated the gut fungi 
during pregnancy based on a prospective cohort study. Here we 
present evidence that the interaction between the Saccharomyces-
dominant enterotype, gut microbial functionality and host 
metabolism may be particularly significant. The network anal-
ysis demonstrated that the Saccharomyces-dominant enterotype 
was associated with more gut microbial functionalities compared 
with other fungal enterotypes. A previous study reported that 
the enterotype dominated by Candida conferred an increased 
risk of multiple diseases,15 but we could not correlate the 
Candida-dominant enterotypes with pregnancy complications 
or adverse birth outcomes among pregnant women. Neverthe-
less, we found some specific core fungal genera, which were risk 
factors for pregnancy complications. The abundances of Mucor 
and Wallemia during early pregnancy were positively associated 
with the risk of GDM and PIH, respectively. We also validated 
the reported adverse effects of both GDM and PIH on birth 

outcomes, such as macrosomia, preterm birth and low birth 
weight.25–27 Moreover, the abundance of Mucor during early 
pregnancy was also directly associated with the risk of macro-
somia, which was independent of GDM. These findings collec-
tively highlight that Mucor and Wallemia may serve as examples 
that support the vital role of gut fungi in impacting pregnancy 
health.

Although the relationship between Mucor and blood glucose 
homoeostasis has not been well studied, prior research reported 
that the Mucor was associated with higher blood glucose levels 
and inflammatory activity among patients with non-alcoholic 
fatty liver.28 On the other hand, high blood glucose level is one 
of the important factors facilitating the growth of Mucor.29 Our 
findings strengthen the relationship between Mucor and glucose 
metabolism disorders during pregnancy. Moreover, in a murine 
model, Mucor administration increased intestinal permeability in 
epithelial cell monolayers, which might be indicative of unstable 
intestinal barriers.30 Of note, the increase in the permeability of 
the gut barrier is thought to contribute to systemic inflamma-
tion and diabetes development, and worsen the microvascular 
complications of existed diabetes.31 32 A prior study investigating 

Figure 6  Distinctive metabolic changes stratified by prepregnancy overweight status and the clinical significance of the gut mycobiome during 
pregnancy. (A) Comparison on the overall metabolic dynamics between subgroups. Principal coordinate analysis (PCoA) was employed, using 
Canberra dissimilarity, to examine the dissimilarities between pregnant women with different prepregnancy overweight status. The value of p was 
determined based on 999 permutations. (B) Venn plot showing the number of distinctive and common metabolites that changed significantly from the 
first trimester to the third trimester. In each subgroup stratified by the prepregnancy overweight status, paired t-tests were conducted for each serum 
metabolite measured at T1 and T3. An FDR<0.05 was considered statistically significant. For those metabolites which significantly changed solely 
among pregnant women who were underweight or overweight prior to pregnancy, we showed the fold-change and value of p for each metabolite 
in the volcano plot. The x-axis shows the log2-transforemd fold-changes, and the y axis indicates the -log (base 10) of the FDR values. Red solid lines 
indicate the threshold of FDR=0.05. Red dots indicate those metabolites significantly increased from T1 to T3, while blue dots indicate metabolites 
that significantly decreased. Only the metabolites that were characterised with the highest accuracy and could be matched with internal standards 
were labelled with compound names in this plot. (C) The relationship between core fungal genera and pregnancy complications as well as adverse 
birth outcomes. Only the statistically significant associations (FDR<0.05) were illustrated in the forest plot. (D) Mediation analysis among the gut 
fungal genus Mucor, GDM and macrosomia. (E) Curves show LOESS fit for the relative abundance of the identified taxa based on preterm delivery 
(green) or not (red). The y-axis indicates the relative abundance. 13(R)-HODE, 13R-hydroxy-9Z,11E-octadecadienoic acid; TriHOME, trihydroxyoctadec-
10-enoic acid; 3–3-HP-3-HPA, 3-(3-Hydroxyphenyl)−3-hydroxypropanoic acid; DiHOME, dihydroxyoctadec-12-enoic acid; 9(S)-HpOTrE, 9S-hydroperoxy-
10E,12Z,15Z-octadecatrienoic acid; O-1821, 7-(3-Hydroxy-2-(3-hydroxy-5-phenylpent-1-enyl)−5-oxocyclopentyl)hept-5-enoic acid. GDM, gestational 
diabetes mellitus; LOESS, locally weighted regression; PIH, pregnancy-induced hypertension.

 on S
eptem

ber 23, 2024 by guest. P
rotected by copyright.

http://gut.bm
j.com

/
G

ut: first published as 10.1136/gutjnl-2024-332260 on 9 M
ay 2024. D

ow
nloaded from

 

http://gut.bmj.com/


10 Fu Y, et al. Gut 2024;0:1–11. doi:10.1136/gutjnl-2024-332260

Gut microbiota

the gut mycobiota of patients with GDM from middle to late 
pregnancy also supports that patients with GDM host a predom-
inance of fungal taxa with potential inflammatory effects.10 
Regarding the potential impact of Mucor on fetal overgrowth, 
there are several species belonging to genus Mucor (eg, Mucor 
circinelloides) which can provide important alternative sources 
of bioactive lipids, due to its high efficiency in synthesising and 
accumulating lipids.33 These findings may help propose poten-
tial mechanisms underlying the detrimental effects of Mucor on 
pregnancy health. Nevertheless, the pathogenic effects of fungi 
could be species-dependent or even strain-dependent.11 34 Further 
studies are needed to validate the underlying mechanisms.

Wallemia has been reported to be a member of fungal micro-
biota in the human gut,35 but it is less well known compared 
with Candida or Saccharomyces. Wallemia represents one of 
the most xerophilic fungal taxa, including the most xerophilic, 
osmophilic, and even halophilic and chaophilic microorganisms 
described to date.36 37 Several species from the genus Wallemia 
were reported to produce several bioactive metabolites or 
toxins, which exhibited antiproliferative and antimicrobial 
activities.38 39 Previous animal experiments reported that altered 
Schaedler flora mice colonised with Wallemia mellicola expe-
rienced enhanced severity of allergic airways disease compared 
with fungus-free control mice.40 In the present study, Wallemia 
was positively associated the risk of PIH, while the underlying 
mechanisms are yet to be investigated. Nevertheless, Wallemia 
are found in various osmotically challenged environments, such 
as dry, salted or highly sugared foods, so we could not rule out 
that the Wallemia in the present study is just a biomarker of 
highly salted foods, which may confound our findings.

Our study has several strengths. First, the large sample size 
enables us to comprehensively profile the gut fungal char-
acteristics and investigate determinants of variations in gut 
mycobiome composition among pregnant women. Second, the 
well-established subcohort with longitudinally repeated sample 
collections and ITS2 sequencing, facilitate the extensive profiling 
of gut fungal dynamics during pregnancy. Finally, the multiomics 
data including ITS2 and 16S sequencing, short-gun metage-
nomics sequencing and serum metabolomics data provide a land-
scape of the networks among gut fungi, biological functionality 
and host metabolites. Our study also has several limitations. The 
pathogenic or probiotic effects of gut fungi could be species-
dependent or even strain-dependent, therefore the resolution at 
the genus level is not high enough in the present study. Future 
research may improve the accuracy of reference databases for 
fungal taxon alignment based on metagenomics data. Second, 
the quantification of gut fungi and bacteria relies on relative 
abundance measurements, which may introduce unexpected 
bias into the statistical analysis. Even when data transformation 
techniques or appropriate methods addressing the compositional 
nature of the data are employed, the potential bias may still 
exist. Third, although we perform correlation analysis to gain 
functional insights of the gut mycobiome, we could not directly 
annotate the functions specific to gut fungi due to the limited 
reference databases. In the future, it will be crucial to enhance 
the function annotation of the human gut mycobiome. Lastly, 
this study only includes Chinese women, which may inevitably 
limit the generalisability of our findings.

In summary, we provide evidence for the dynamic nature of gut 
fungi in comparison to gut bacteria during pregnancy, revealing 
that prepregnancy overweight status may be a key determi-
nant for this alteration. This study presents a landscape of the 
networks among the gut mycobiome, biological functionality, 
serum metabolites and pregnancy health, pinpointing the link 

between fungal genus Mucor and adverse pregnancy outcomes. 
This study also provides a reference database and resource for 
future investigation on the functional role of gut mycobiome in 
healthy pregnancy.
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 2 

Methods 20 

Study population  21 

The current study was based on the Tongji-Huaxi-Shuangliu Birth Cohort (THSBC), 22 

in which pregnant women aged 18 to 41 years were recruited during the early 23 

pregnancy when they presented to antenatal care clinics in in a local maternal and 24 

child health hospital during their early pregnancy. Exclusion criteria were 1) receiving 25 

infertility treatment (e.g., in vitro fertilization or intrauterine insemination); 2) 26 

reporting severe chronic or infectious diseases (e.g., cancer, HIV infection, or 27 

tuberculosis); or 3) were unable to or refused to sign the informed consent. The 28 

THSBC study was approved by the Ethics Committee of Tongji Medical College, 29 

Huazhong University of Science and Technology (No. [2017](S225)-1), and informed 30 

consent was obtained from all participants.  31 

 32 

In the present analysis, we included 4800 participants who had available ITS2 33 

sequencing data, dietary information and clinical records during their pregnancy. This 34 

dataset enables us to comprehensively profile the gut mycobiome among pregnant 35 

women and investigate potential determinants contributing to the variations of gut 36 

mycobiome. To examine how pregnancy impacts the gut mycobiome over time and 37 

investigate their potential associations with host metabolism, we established a sub-38 

cohort of 1059 participants, which included 514 women who gave birth to preterm 39 

(n=240), low birthweight (n=137), or macrosomia (n=216) infants, as well as 545 40 

randomly selected participants who did not experience the above three adverse 41 

pregnancy outcomes.  42 

 43 

ITS2 sequencing was performed for all the 4800 participants, while the shotgun 44 

metagenomics sequencing was performed for T1 samples within the established sub-45 

cohort (n=1059). Additionally, within the sub-cohort, 750 and 748 participants had 46 

ITS2 and 16S sequencing data available, respectively, for all trimesters. We also 47 

repeatedly measured serum metabolome throughout each trimester of pregnancy for 48 

participants in this selected sub-cohort using an LC-ESI-MS/MS system.  49 
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 3 

Sample collection  50 

Stool samples were collected and stored in ice boxes at the hospital or home by the 51 

participants under instructions and then transferred to the hospital to store at −40 °C 52 

within 24 hours. A detailed standard operating procedure was given to the pregnant 53 

women for instructions on fecal sample collection, temporary storage, and 54 

transportation to the hospital. Stocks of frozen fecal samples were transported by dry 55 

ice every 2 to 3 months to the laboratory in Huazhong University of Science and 56 

Technology and stored at -80 °C before further processing.  57 

 58 

Questionnaires and clinical data collection 59 

All participants completed a set of structured questionnaires on sociodemographic 60 

information, lifestyle and behaviors (such as cigarette smoking and alcohol drinking), 61 

diet (including recent daily intakes of major food groups), history of pregnancy and 62 

births, history of diseases and medications, and family history of diseases. 63 

Anthropometric and blood pressure measurements were collected on site using 64 

devices according to standard protocols. Body mass index (BMI) was calculated by 65 

dividing the weight in kilograms by the square of height in meters. Underweight, 66 

overweight and obesity was defined as BMI<18.5, BMI ≥ 24 kg/m2 and BMI ≥ 28 67 

kg/m2, respectively. Pregnancy complications (e.g., gestational diabetes mellitus) and 68 

birth outcomes were extracted from the electronic clinical records.  69 

 70 

Bioinformatic analyses 71 

Gut mycobiome analysis using ITS2 rRNA gene sequencing data  72 

Microbial DNA was extracted using the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, 73 

Norcross, GA, U.S.) according to manufacturer’s protocols. The final DNA 74 

concentration and purification were determined by NanoDrop 2000 UV-vis 75 

spectrophotometer (Thermo Scientific, Wilmington, USA), and DNA quality was 76 

checked by 1% agarose gel electrophoresis. The ITS2 hypervariable regions of the 77 

fungal ITS rRNA gene were amplified with primers ITS3F: 78 

GCATCGATGAAGAACGCAGC and ITS4R: TCCTCCGCTTATTGATATGC by 79 
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 4 

thermocycler PCR system (GeneAmp 9700, ABI, USA). Purified amplicons were 80 

pooled in equimolar and paired-end sequenced (2 × 250) on an Illumina NovaSeq 81 

platform (Illumina, San Diego, USA) according to the standard protocols by Majorbio 82 

Bio-Pharm Technology Co. Ltd. (Shanghai, China). 83 

 84 

The mean sequencing depth and its standard deviation for all samples were 118,177 85 

and 7955, respectively. It is worth noting that within the sub-cohort analyzed 86 

longitudinally, the number of sequencing reads remained relatively consistent across 87 

trimesters. Specifically, the mean (SD) sequencing depths were 117,906 (8350), 88 

118,882 (6125), and 116,688 (9198) for samples collected during the first, second, 89 

and third trimester of pregnancy, respectively. The demultiplexed ITS2 sequences 90 

were denoised and grouped into amplicon sequence variants (ASVs; i.e., 100% exact 91 

sequence match) using DADA2.[1] During the process, marker gene Illumina 92 

sequence data and low-quality regions of the sequences were detected and filtered. 93 

We trimmed 28 bases (primer and barcode) from the beginning of the sequences. We 94 

also truncated the sequences at the 245 bases as the quality dropped around position 95 

245 (median of quality score <30). The ASV features that were presented in only one 96 

sample were excluded as suggested by the Qiime2 tutorial, based on the suspicion that 97 

these may not represent real biological diversity but rather PCR or sequencing errors. 98 

The individual ASVs were taxonomically classified based on the UNITE (version 8.2, 99 

99%) database using the VSEARCH tool wrapped in QIIME2 (version 2021.2).[2] α-100 

diversity analysis was conducted through the q2-diversity plugin at the sampling 101 

depth of 10000. α-diversity was estimated by Shannon’s diversity index (or Shannon; 102 

a quantitative measure of community richness and evenness), Observed Features (or 103 

Richness; a qualitative measure of community richness), and Faith’s PD (or Faith’s 104 

Phylogenetic Diversity; a qualitative measure of community richness that incorporates 105 

phylogenetic relationships between the observed features).  106 

 107 

Gut bacteria analysis using 16S rRNA gene sequencing data   108 

For the 16S analysis, raw sequencing reads were merge-paired, quality filtered and 109 
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 5 

analyzed using QIIME2 (version 2021.2). As described above, we used DADA2 110 

denoised-paired plugin in QIIME2 to process the fastq files. We filtered the features 111 

that were present in only a single sample. The taxonomies of ASVs were subsequently 112 

determined using the Naive Bayes classifier trained on the Sliva_138 99% reference 113 

database. α-diversity analysis was conducted at the sampling depth of 10000. Α 114 

diversity of the gut bacteria was estimated by the indices the same as ITS2 data. 115 

 116 

Microbial functional profiling using metagenome data 117 

Microbial DNA extractions were carried out by a standardized CTAB procedure. 118 

DNA concentration was measured using Qubit dsDNA Assay Kit in Qubit 2.0 119 

Fluorometer (Life Technologies, CA, USA). For DNA library preparation, a total 120 

amount of 1μg DNA per sample was used. In addition, the NEBNext Ultra DNA 121 

Library Prep Kit (NEB, USA) was used following manufacturer’s recommendations 122 

and index codes were added to attribute sequences to each sample. The DNA samples 123 

were fragmented by sonication to a size of approximately 350 bp. Then, the DNA 124 

fragments were end-polished, A-tailed, and ligated with the full-length adaptor for 125 

Illumina sequencing with further PCR amplification. Thereafter, PCR products were 126 

purified (AMPure XP system) and libraries were analyzed for size distribution by 127 

Agilent2100 Bioanalyzer and quantified using real-time PCR. The clustering of the 128 

index-coded samples was performed on a cBot Cluster Generation System according 129 

to the manufacturer’s instructions. Lastly, sequencing was performed using the 130 

Illumina NovaSeq platform at Shanghai Personal Biotechnology Co. Ltd. (Shanghai, 131 

China) and 150 bp paired-end reads were generated. 132 

 133 

Next, raw sequencing reads were first quality-controlled with KneadData toolkit 134 

(v0.10.0): 1) to trim the reads by quality score from the 5′ end and 3′ end with a 135 

quality threshold of 20; 2) removed read pairs when either read was < 50 bp, 136 

contained “N” bases or quality score mean below 30; and 3) deduplicate the reads. 137 

Reads aligning to the human genome (H. sapiens, UCSC hg38) were removed via 138 

KneadData integrated with Bowtie2 tool (v2.4.5). 139 
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 6 

Functional profiling was performed with HUMAnN3 (v3.0.1), which maps sample 140 

reads against the sample-specific reference database to quantify gene presence and 141 

abundance in a species-stratified manner, with unmapped reads further used in a 142 

translated search against Uniref90 to include taxonomically unclassified but 143 

functionally distinct gene family abundances. We extracted the Uniref90 gene 144 

families of gut bacteria for downstream analyses. The Uniref90 gene families were 145 

then converted into relative abundances of unstratified pathway. 146 

 147 

Serum metabolomics profiling 148 

The sample extracts were analyzed using an LC-ESI-MS/MS system (UPLC, 149 

ExionLC AD, https://sciex.com.cn/; MS, QTRAP® System, https://sciex.com/) at 150 

Wuhan Metware Biotechnology Co., Ltd. (Wuhan, China). LIT and triple quadrupole 151 

(QQQ) scans were acquired on a triple quadrupole-linear ion trap mass spectrometer 152 

(QTRAP), QTRAP® LC-MS/MS System, equipped with an ESI Turbo Ion-Spray 153 

interface, operating in positive and negative ion mode and controlled by Analyst 1.6.3 154 

software (Sciex). Instrument tuning and mass calibration were performed with 10 and 155 

100 μmol/L polypropylene glycol solutions in QQQ and LIT modes, respectively. 156 

QQQ scans were acquired as MRM experiments with collision gas (nitrogen) set to 5 157 

psi. Declustering potential (DP) and collision energy (CE) for individual MRM 158 

transitions was done with further DP and CE optimization. A specific set of MRM 159 

transitions were monitored for each period according to the metabolites eluted within 160 

this period. The mass spectrum data were processed using Software Analyst 1.6.3. 161 

The metabolite identification was conducted by referencing standards in self-built 162 

metware database and public databases. The identified metabolites were matched with 163 

the parent ion mass-to-charge ratio, the fragment ion mass-to-charge ratio as well as 164 

retention time of their corresponding standards. The accuracy of metabolite 165 

characterization was classified into three levels, depending on the presence of isotope 166 

internal standards or matching score with the secondary mass spectrometry. The 167 

matching score>0.7 indicates the level 1 accuracy of metabolite characterization, 168 

while 0.5-0.7 and <0.5 indicate the level 2 and level 3 accuracy, respectively. 169 
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 7 

Statistical analysis 170 

Determinants of gut fungal composition among pregnant women 171 

The gut mycobiome data were analyzed at the genus level. We investigated the 172 

determinants of the gut fungal composition using the data collected from 4800 173 

participants during the first trimester, with each participant contributing only 1 stool 174 

sample. We used the vegdist function in the R package vegan to calculate the gut 175 

fungal Bray-Curtis dissimilarity matrix. The contribution of 20 environmental 176 

variables (including demographics, physiologic traits, diseases, and habitual dietary 177 

intakes) to fungal community variation was determined by PERMANOVA analysis 178 

using the function adonis2 in vegan.[3] We applied a complete data analysis strategy 179 

which excluded 19 participants with missing values for at least one of the 180 

environmental variables. The 4800 samples included in this analysis were sequenced 181 

in two separate batches. Therefore, we included the batch information as a covariate 182 

in the model, to adjust for potential batch effects. The p value was determined through 183 

999 permutations. 184 

 185 

Gut fungal and bacterial enterotype clustering 186 

The fecal samples (T1, n=4800; T2, n=890; T3, n=850) of ITS2 amplification were 187 

clustered into fungal enterotypes by using a partitioning around medoid (PAM) 188 

clustering method as those previously described.[4] Briefly, the samples were grouped 189 

into clusters with partitioning around medoid (PAM) based on the between-sample 190 

Bray–Curtis distance calculated at genus-level. The optimal number of clusters was 191 

determined by the silhouette index. The driver genus of each enterotype was 192 

determined as the genus with the highest relative abundance in the enterotype. The 193 

fecal samples of 16S amplification were clustered into bacterial enterotypes by using 194 

the method as that for bacterial enterotype.  195 

 196 

Dynamics of within-sample α diversity throughout each trimester of pregnancy 197 

This analysis was conducted in the established sub-cohort of 750 participants who had 198 

available gut fungi α diversity data for each trimester of pregnancy. We utilized 199 
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 8 

paired t-tests to assess the statistical significance of the changes in fungal α diversity 200 

between T1 and T2, as well as between T2 and T3 independently.  201 

 202 

Among the 750 participants included in the study to profile changes in gut fungal 203 

richness from T1 to T3, data on the estimation of consumption changes in food groups 204 

from T1 to T3 based on the FFQ were available for 639 participants. These food 205 

groups consisted of rice, steamed bread, noodles, vegetables, meat, eggs, milk, and 206 

fruit. The weight of each food group consumed per day was quantified based on the 207 

FFQ. We applied a linear regression model to estimate the association between the 208 

changes in richness from T1 to T3 and the respective food group. As covariates, we 209 

incorporated age, pre-pregnancy BMI, interval time between sample collections, 210 

parity, and gravidity. An FDR<0.05 was considered statistically significant.  211 

 212 

Loss rate calculations and discriminative genera identification  213 

Utilizing the available repeated measurements of gut fungi throughout pregnancy 214 

within the designated sub-cohort (n=750), we elucidated the loss rate for each fungal 215 

genus as the host underwent progression from T1 to T3. The loss rate for each fungal 216 

genus was determined by quantifying the proportion of the decline in frequency 217 

observed between T1 and T3.  218 

 219 

To assess the gut fungi enriched or depleted during early or late pregnancy, we 220 

conducted an analysis using paired t test analysis. This analysis was based on the 221 

examination of 465 genera that were detected at either T1 or T3. We transformed the 222 

taxa data using the centered log-ratio (CLR) method to address the compositional 223 

nature of the mycobiome data before we perform the paired t test analysis. To 224 

determine statistical significance, a false discovery rate (FDR)-adjusted p-value 225 

threshold of less than 0.05 was used.  226 

Additionally, we used these 465 fungal genera to construct a machine learning 227 

framework of LightGBM for predicting the trimester that the samples belong to.[5] 228 

The construction of prediction model was based on Scikit-learn (v0.15.2), and ten-229 
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 9 

fold cross validation (CV) was applied. To evaluate binary classification performance, 230 

receiver operating characteristic (ROC) curve analyses were conducted using the R 231 

package pROC. We used the SHAP (Shapley Additive exPlanations) to interpret 232 

predictions and the importance of each fungal genus to the prediction model is 233 

represented using Shapley values.[6] 234 

 235 

Quantification of intra-individual gut fungi compositional alterations  236 

We applied the vegdist function from the R package vegan to calculate the Bray-237 

Curtis distance based on gut fungal genus-level composition to assess intra-individual 238 

and inter-individual dissimilarities, respectively.[3] The sub-cohort, consisting of 750 239 

participants, was included in this analysis, as they had relevant data throughout each 240 

trimester of pregnancy. To determine the intra-individual distance, paired data was 241 

used, with the gut mycobiome data at T1 serving as the reference. Subsequently, a 242 

Bray-Curtis distance value was calculated for each participant in the sub-cohort, 243 

reflecting the extent of gut fungal compositional alterations. 244 

We fitted a multivariate regression model to examine the associations of pre-245 

pregnancy overweight status (category variable) or pre-pregnancy BMI (continuous 246 

variable, z-score transformed) with the extent of gut fungal compositional alteration 247 

within the established sub-cohort. The model was adjusted for potential confounders 248 

including age, time interval between sample collection, parity, antibiotics use and 249 

pregnancy complications. To examine the potential influence of gut fungal 250 

compositional alteration on adverse birth outcomes, multivariate regression models 251 

were constructed for preterm delivery, low birthweight, and macrosomia. The 252 

aforementioned potential confounders, along with the extent of gut fungal 253 

compositional alteration, were considered as exposure variables in these models. 254 

 255 

With regard to the divergence between individuals, the inter-individual distance was 256 

evaluated at various time points (i.e., T1, T2 or T3), separately. At each time point 257 

(e.g., T1 or T3), we calculate the average Bray-Curtis distance for each participant 258 

compared to all other participants. Thus, at each time point, each participant 259 
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 10 

possessed a distance value to reflect the similarity of her gut fungal composition with 260 

others.  261 

 262 

Dynamic trajectory of the core gut fungal genera and their relationship with host 263 

health status 264 

We conducted a longitudinal trajectory analysis for each core fungal genus in the 265 

established sub-cohort comprising 750 participants. For each core fungi, every 266 

participant had three measurements recorded at different time points, namely T1, T2, 267 

and T3. Therefore, the trajectory of a genus within an individual participant could be 268 

characterized by a vector consisting of three component values corresponding to these 269 

time points. Thereafter, we applied the vegdist function from the R package vegan to 270 

calculate the Canberra distance metric.[3] We performed PERMANOVA analysis 271 

using the function adonis2 in vegan, to assess the association of between-individual 272 

variation in the trajectory of each fungal genus with pre-pregnancy overweight status 273 

or adverse birth outcomes. The p value was determined through 999 permutations and 274 

an FDR-adjusted p value of less than 0.05 was considered indicative of statistical 275 

significance. 276 

 277 

Network analysis among gut fungal enterotype, functional pathways and host 278 

serum metabolites 279 

The network analysis was conducted among the participants who had available 280 

metagenome data during the first trimester of pregnancy. After excluding 35 281 

participants who had antibiotics exposure within 2weeks before stool sample 282 

collection, this analysis included a total of 1001 women. We firstly performed 283 

Kruskal-Wallis test to identify pathways whose distribution varied across fungal 284 

enterotypes. Thereafter, we performed post-hoc pair-wise comparison to defined 285 

which enterotype was enrich with the identified pathways. We fitted multivariate 286 

regression models to examine the associations of identified pathways with host serum 287 

metabolites. Here, we adjusted for potential confounders including age, gestation 288 

week, parity and pre-pregnancy BMI. Both the fungi and pathway data were 289 
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standardized using z-score before the regression analysis. An FDR-adjusted p value of 290 

less than 0.05 was considered indicative of statistical significance. 291 

 292 

Covarying relationship between gut fungi alterations and host metabolic changes 293 

We investigated the relationship between alterations in gut fungi and changes in host 294 

metabolism among 709 participants. These participants had available gut mycobiome 295 

sequencing data as well as serum metabolome data during each trimester of 296 

pregnancy. To address the compositional nature of the mycobiome data, we first 297 

applied the centered log-ratio (CLR) method to transform the taxa data. Next, we 298 

calculated the changes in each core fungus from T1 to T3 for each participant. 299 

Additionally, we calculated the changes in signal intensity of each serum metabolite 300 

from T1 to T3 for each participant. This enabled us to construct a matrix of gut fungi 301 

alterations and a matrix of host metabolic changes. To investigate the overall 302 

relationship between gut fungi alterations and host metabolic changes, we conducted 303 

Procrustes analysis in R using the ‘vegan’ R package. Procrustes. The p-value was 304 

generated based on 999 permutations.[3] 305 

 306 

Furthermore, we explored the covarying relationship between individual fungal 307 

genera and individual serum metabolites. For this analysis, we applied pairwise 308 

Spearman correlation analysis to each genus-serum metabolite pair in the 309 

aforementioned dataset. We considered a false discovery rate (FDR)-adjusted p-value 310 

of less than 0.05 as indicative of statistical significance. 311 

 312 

Pre-pregnancy overweight status impacts the metabolic changes during 313 

pregnancy 314 

For those participants with available serum metabolomics data throughout each 315 

trimester of pregnancy, we had constructed a matrix of host metabolic changes. Based 316 

on this matrix, the vegdist function from the R package vegan was utilized to calculate 317 

the Canberra distance metric.[3] To assess the contribution of pre-pregnancy 318 

overweight to the variation in metabolic changes between individuals, a 319 
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PERMANOVA analysis was conducted using the adonis2 function from the vegan 320 

package.[3] The significance of the results was determined using 999 permutations, 321 

and a false discovery rate (FDR)-adjusted p-value of less than 0.05 was considered 322 

statistically significant. 323 

 324 

To identify the distinct metabolic alterations in underweight and overweight pregnant 325 

women, we classified the participants into three groups based on their pre-pregnancy 326 

weight status: underweight, normal weight, and overweight/obese. Paired t-tests were 327 

conducted for each serum metabolite measured at T1 and T3 within each group. A 328 

FDR-adjusted p-value of less than 0.05 was considered statistically significant. 329 

Metabolic changes that were observed as significant solely among the underweight 330 

group, but not in the other groups, were defined as unique metabolic changes in 331 

pregnant women who were underweight prior to pregnancy. Similarly, significant 332 

metabolic changes observed solely among the overweight/obese group were defined 333 

as unique metabolic changes in pregnant women who were overweight/obese prior to 334 

pregnancy. 335 

 336 

Clinical impact of the gut mycobiome during pregnancy 337 

Logistic regression was used to evaluate the association between each core fungal 338 

genus, specifically measured during the first trimester of pregnancy, and the 339 

occurrence of pregnancy complications (GDM and PIH), as well as adverse birth 340 

outcomes (e.g., preterm delivery, macrosomia, and low birthweight). The model 341 

included age, pre-pregnancy BMI, parity as covariates. Specifically, when examining 342 

GDM or PIH as exposures, the model was adjusted for these variables. Additionally, 343 

when fungal genera were included as exposures, the fungal genera data were z-score 344 

standardized and the model was further adjusted for the gestational week 345 

corresponding to stool sample collection and the batch of sequencing. 346 

 347 

The analysis pertaining to pregnancy complications was conducted among 4606 348 

participants who possessed gut fungi sequencing data at T1 and information regarding 349 
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pregnancy complications. Likewise, the analysis concerning birth outcomes was 350 

performed among 4656 participants who had gut fungi sequencing data at T1 and 351 

information on birth outcomes. In both analyses, a complete data analysis strategy 352 

was implemented for variables with an exceptionally low occurrence of missing 353 

values, which consequently excluded 3 participants. For the variable "gestational 354 

week at stool sample collection," which was missing for 278 participants, a multiple 355 

imputation strategy was employed to impute these missing values. As a result, the 356 

logistic regression model for pregnancy complications consisted of 4603 participants, 357 

while the logistic regression model for adverse birth outcomes encompassed 4653 358 

participants. 359 

 360 

For pregnancy complications that exhibited significant associations with both gut 361 

fungi and adverse birth outcomes, we conducted mediation analysis to investigate the 362 

potential mediation effect of pregnancy complications on the link between the 363 

mycobiome and adverse birth outcomes. All statistical analyses were performed using 364 

Stata version 15 or R version 4.0.2.  365 

 366 
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Table S1: Characteristics of demographic, clinical and dietary factors stratified by early-pregnancy fungal enterotypes 

 Candida-dominated enterotype (n=907) Aspergillus-dominated enterotype (n=2723) Saccharomyces-dominated enterotype (n=1170) p* 

Age (year) 26.4 (3.6) 26.3 (3.6) 26.5 (3.5) 0.246 

Pre-pregnancy BMI 20.8 (2.9) 20.9 (2.9) 21.0 (3.1) 0.343 

Gestation week (wk) 10.2 (2.1) 10.2 (2.0) 10.1 (2.0) 0.374 

Time to delivery (day) 198.2 (16.1） 198.4 (15.5） 198.5 (15.6） 0.940 

Parity    0.013 

Primiparous 54.0% 57.3% 60.5%  

Overweight status    0.249 

Overweight or obese 21.8 19.2 19.7  

Normal weight 65.1 67.6 65.3  

Underweight 13.1 13.3 15  

Steam bread consumption    <0.001 

Ever (during the past 1 year) 46.9% 47.3% 54.2%  

Drinking     0.070 

Ever (during the past 1 year) 22.4% 22.0% 18.9%  

Tea consumption    0.024 

Ever (during the past 1 year) 34.0% 33.7% 29.5%  

Coffee consumption    0.057 

Ever (during the past 1 year) 24.6% 26.6% 23.1%  

Milk consumption    0.564 

never 19.2% 21.0% 19.7%  

<1 / day 42.9% 42.9% 42.1%  

≥1/day 38.0% 36.1% 38.2%  

* One-way ANOVA was applied to examine the significance of difference between groups for continuous variables, while chi-square test was 

used for category variables. 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2024-332260–11.:10 2024;Gut, et al. Fu Y



 16 

Table S2. The association between changes in consumption of food groups during pregnancy and alterations in gut fungal richness* 

Exposure (changes in consumption of food groups) Beta coefficient 95% CI p FDR 

Rice (per 50g/day) -3.20 (-5.75, -0.64) 0.014 0.11 

Steamed bread (per 1 bread/day) -6.38 (-12.9, 0.14) 0.055 0.15 

Noodle (per 50g/day) -5.06 (-10.63, 0.50) 0.074 0.15 

Vegetables (per 50g/day) 1.20 (-9.82, 3.22) 0.243 0.39 

Meat (per 50g/day) 1.45 (-3.48, 6.37) 0.564 0.64 

Egg (per 1 egg/day) 7.33 (0.26, 14.41) 0.042 0.15 

Milk (per 50g/day) 0.01 (-0.01, 0.03) 0.51 0.64 

Fruit (per 50g/day) -0.30 (-1.89, 1.29) 0.712 0.71 

* Covariates included in the regression model: age, pre-pregnancy BMI, interval time between sample collections, parity, and gravidity. 

639 out of the 750 with available data on the estimation of consumption changes in food groups from T1 to T3 based on the FFQ were included.  
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Methods 20 

Study population  21 

The current study was based on the Tongji-Huaxi-Shuangliu Birth Cohort (THSBC), 22 

in which pregnant women aged 18 to 41 years were recruited during the early 23 

pregnancy when they presented to antenatal care clinics in in a local maternal and 24 

child health hospital during their early pregnancy. Exclusion criteria were 1) receiving 25 

infertility treatment (e.g., in vitro fertilization or intrauterine insemination); 2) 26 

reporting severe chronic or infectious diseases (e.g., cancer, HIV infection, or 27 

tuberculosis); or 3) were unable to or refused to sign the informed consent. The 28 

THSBC study was approved by the Ethics Committee of Tongji Medical College, 29 

Huazhong University of Science and Technology (No. [2017](S225)-1), and informed 30 

consent was obtained from all participants.  31 

 32 

In the present analysis, we included 4800 participants who had available ITS2 33 

sequencing data, dietary information and clinical records during their pregnancy. This 34 

dataset enables us to comprehensively profile the gut mycobiome among pregnant 35 

women and investigate potential determinants contributing to the variations of gut 36 

mycobiome. To examine how pregnancy impacts the gut mycobiome over time and 37 

investigate their potential associations with host metabolism, we established a sub-38 

cohort of 1059 participants, which included 514 women who gave birth to preterm 39 

(n=240), low birthweight (n=137), or macrosomia (n=216) infants, as well as 545 40 

randomly selected participants who did not experience the above three adverse 41 

pregnancy outcomes.  42 

 43 

ITS2 sequencing was performed for all the 4800 participants, while the shotgun 44 

metagenomics sequencing was performed for T1 samples within the established sub-45 

cohort (n=1059). Additionally, within the sub-cohort, 750 and 748 participants had 46 

ITS2 and 16S sequencing data available, respectively, for all trimesters. We also 47 

repeatedly measured serum metabolome throughout each trimester of pregnancy for 48 

participants in this selected sub-cohort using an LC-ESI-MS/MS system.  49 
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Sample collection  50 

Stool samples were collected and stored in ice boxes at the hospital or home by the 51 

participants under instructions and then transferred to the hospital to store at −40 °C 52 

within 24 hours. A detailed standard operating procedure was given to the pregnant 53 

women for instructions on fecal sample collection, temporary storage, and 54 

transportation to the hospital. Stocks of frozen fecal samples were transported by dry 55 

ice every 2 to 3 months to the laboratory in Huazhong University of Science and 56 

Technology and stored at -80 °C before further processing.  57 

 58 

Questionnaires and clinical data collection 59 

All participants completed a set of structured questionnaires on sociodemographic 60 

information, lifestyle and behaviors (such as cigarette smoking and alcohol drinking), 61 

diet (including recent daily intakes of major food groups), history of pregnancy and 62 

births, history of diseases and medications, and family history of diseases. 63 

Anthropometric and blood pressure measurements were collected on site using 64 

devices according to standard protocols. Body mass index (BMI) was calculated by 65 

dividing the weight in kilograms by the square of height in meters. Underweight, 66 

overweight and obesity was defined as BMI<18.5, BMI ≥ 24 kg/m2 and BMI ≥ 28 67 

kg/m2, respectively. Pregnancy complications (e.g., gestational diabetes mellitus) and 68 

birth outcomes were extracted from the electronic clinical records.  69 

 70 

Bioinformatic analyses 71 

Gut mycobiome analysis using ITS2 rRNA gene sequencing data  72 

Microbial DNA was extracted using the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, 73 

Norcross, GA, U.S.) according to manufacturer’s protocols. The final DNA 74 

concentration and purification were determined by NanoDrop 2000 UV-vis 75 

spectrophotometer (Thermo Scientific, Wilmington, USA), and DNA quality was 76 

checked by 1% agarose gel electrophoresis. The ITS2 hypervariable regions of the 77 

fungal ITS rRNA gene were amplified with primers ITS3F: 78 

GCATCGATGAAGAACGCAGC and ITS4R: TCCTCCGCTTATTGATATGC by 79 
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 4 

thermocycler PCR system (GeneAmp 9700, ABI, USA). Purified amplicons were 80 

pooled in equimolar and paired-end sequenced (2 × 250) on an Illumina NovaSeq 81 

platform (Illumina, San Diego, USA) according to the standard protocols by Majorbio 82 

Bio-Pharm Technology Co. Ltd. (Shanghai, China). 83 

 84 

The mean sequencing depth and its standard deviation for all samples were 118,177 85 

and 7955, respectively. It is worth noting that within the sub-cohort analyzed 86 

longitudinally, the number of sequencing reads remained relatively consistent across 87 

trimesters. Specifically, the mean (SD) sequencing depths were 117,906 (8350), 88 

118,882 (6125), and 116,688 (9198) for samples collected during the first, second, 89 

and third trimester of pregnancy, respectively. The demultiplexed ITS2 sequences 90 

were denoised and grouped into amplicon sequence variants (ASVs; i.e., 100% exact 91 

sequence match) using DADA2.[1] During the process, marker gene Illumina 92 

sequence data and low-quality regions of the sequences were detected and filtered. 93 

We trimmed 28 bases (primer and barcode) from the beginning of the sequences. We 94 

also truncated the sequences at the 245 bases as the quality dropped around position 95 

245 (median of quality score <30). The ASV features that were presented in only one 96 

sample were excluded as suggested by the Qiime2 tutorial, based on the suspicion that 97 

these may not represent real biological diversity but rather PCR or sequencing errors. 98 

The individual ASVs were taxonomically classified based on the UNITE (version 8.2, 99 

99%) database using the VSEARCH tool wrapped in QIIME2 (version 2021.2).[2] α-100 

diversity analysis was conducted through the q2-diversity plugin at the sampling 101 

depth of 10000. α-diversity was estimated by Shannon’s diversity index (or Shannon; 102 

a quantitative measure of community richness and evenness), Observed Features (or 103 

Richness; a qualitative measure of community richness), and Faith’s PD (or Faith’s 104 

Phylogenetic Diversity; a qualitative measure of community richness that incorporates 105 

phylogenetic relationships between the observed features).  106 

 107 

Gut bacteria analysis using 16S rRNA gene sequencing data   108 

For the 16S analysis, raw sequencing reads were merge-paired, quality filtered and 109 
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 5 

analyzed using QIIME2 (version 2021.2). As described above, we used DADA2 110 

denoised-paired plugin in QIIME2 to process the fastq files. We filtered the features 111 

that were present in only a single sample. The taxonomies of ASVs were subsequently 112 

determined using the Naive Bayes classifier trained on the Sliva_138 99% reference 113 

database. α-diversity analysis was conducted at the sampling depth of 10000. Α 114 

diversity of the gut bacteria was estimated by the indices the same as ITS2 data. 115 

 116 

Microbial functional profiling using metagenome data 117 

Microbial DNA extractions were carried out by a standardized CTAB procedure. 118 

DNA concentration was measured using Qubit dsDNA Assay Kit in Qubit 2.0 119 

Fluorometer (Life Technologies, CA, USA). For DNA library preparation, a total 120 

amount of 1μg DNA per sample was used. In addition, the NEBNext Ultra DNA 121 

Library Prep Kit (NEB, USA) was used following manufacturer’s recommendations 122 

and index codes were added to attribute sequences to each sample. The DNA samples 123 

were fragmented by sonication to a size of approximately 350 bp. Then, the DNA 124 

fragments were end-polished, A-tailed, and ligated with the full-length adaptor for 125 

Illumina sequencing with further PCR amplification. Thereafter, PCR products were 126 

purified (AMPure XP system) and libraries were analyzed for size distribution by 127 

Agilent2100 Bioanalyzer and quantified using real-time PCR. The clustering of the 128 

index-coded samples was performed on a cBot Cluster Generation System according 129 

to the manufacturer’s instructions. Lastly, sequencing was performed using the 130 

Illumina NovaSeq platform at Shanghai Personal Biotechnology Co. Ltd. (Shanghai, 131 

China) and 150 bp paired-end reads were generated. 132 

 133 

Next, raw sequencing reads were first quality-controlled with KneadData toolkit 134 

(v0.10.0): 1) to trim the reads by quality score from the 5′ end and 3′ end with a 135 

quality threshold of 20; 2) removed read pairs when either read was < 50 bp, 136 

contained “N” bases or quality score mean below 30; and 3) deduplicate the reads. 137 

Reads aligning to the human genome (H. sapiens, UCSC hg38) were removed via 138 

KneadData integrated with Bowtie2 tool (v2.4.5). 139 
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 6 

Functional profiling was performed with HUMAnN3 (v3.0.1), which maps sample 140 

reads against the sample-specific reference database to quantify gene presence and 141 

abundance in a species-stratified manner, with unmapped reads further used in a 142 

translated search against Uniref90 to include taxonomically unclassified but 143 

functionally distinct gene family abundances. We extracted the Uniref90 gene 144 

families of gut bacteria for downstream analyses. The Uniref90 gene families were 145 

then converted into relative abundances of unstratified pathway. 146 

 147 

Serum metabolomics profiling 148 

The sample extracts were analyzed using an LC-ESI-MS/MS system (UPLC, 149 

ExionLC AD, https://sciex.com.cn/; MS, QTRAP® System, https://sciex.com/) at 150 

Wuhan Metware Biotechnology Co., Ltd. (Wuhan, China). LIT and triple quadrupole 151 

(QQQ) scans were acquired on a triple quadrupole-linear ion trap mass spectrometer 152 

(QTRAP), QTRAP® LC-MS/MS System, equipped with an ESI Turbo Ion-Spray 153 

interface, operating in positive and negative ion mode and controlled by Analyst 1.6.3 154 

software (Sciex). Instrument tuning and mass calibration were performed with 10 and 155 

100 μmol/L polypropylene glycol solutions in QQQ and LIT modes, respectively. 156 

QQQ scans were acquired as MRM experiments with collision gas (nitrogen) set to 5 157 

psi. Declustering potential (DP) and collision energy (CE) for individual MRM 158 

transitions was done with further DP and CE optimization. A specific set of MRM 159 

transitions were monitored for each period according to the metabolites eluted within 160 

this period. The mass spectrum data were processed using Software Analyst 1.6.3. 161 

The metabolite identification was conducted by referencing standards in self-built 162 

metware database and public databases. The identified metabolites were matched with 163 

the parent ion mass-to-charge ratio, the fragment ion mass-to-charge ratio as well as 164 

retention time of their corresponding standards. The accuracy of metabolite 165 

characterization was classified into three levels, depending on the presence of isotope 166 

internal standards or matching score with the secondary mass spectrometry. The 167 

matching score>0.7 indicates the level 1 accuracy of metabolite characterization, 168 

while 0.5-0.7 and <0.5 indicate the level 2 and level 3 accuracy, respectively. 169 
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 7 

Statistical analysis 170 

Determinants of gut fungal composition among pregnant women 171 

The gut mycobiome data were analyzed at the genus level. We investigated the 172 

determinants of the gut fungal composition using the data collected from 4800 173 

participants during the first trimester, with each participant contributing only 1 stool 174 

sample. We used the vegdist function in the R package vegan to calculate the gut 175 

fungal Bray-Curtis dissimilarity matrix. The contribution of 20 environmental 176 

variables (including demographics, physiologic traits, diseases, and habitual dietary 177 

intakes) to fungal community variation was determined by PERMANOVA analysis 178 

using the function adonis2 in vegan.[3] We applied a complete data analysis strategy 179 

which excluded 19 participants with missing values for at least one of the 180 

environmental variables. The 4800 samples included in this analysis were sequenced 181 

in two separate batches. Therefore, we included the batch information as a covariate 182 

in the model, to adjust for potential batch effects. The p value was determined through 183 

999 permutations. 184 

 185 

Gut fungal and bacterial enterotype clustering 186 

The fecal samples (T1, n=4800; T2, n=890; T3, n=850) of ITS2 amplification were 187 

clustered into fungal enterotypes by using a partitioning around medoid (PAM) 188 

clustering method as those previously described.[4] Briefly, the samples were grouped 189 

into clusters with partitioning around medoid (PAM) based on the between-sample 190 

Bray–Curtis distance calculated at genus-level. The optimal number of clusters was 191 

determined by the silhouette index. The driver genus of each enterotype was 192 

determined as the genus with the highest relative abundance in the enterotype. The 193 

fecal samples of 16S amplification were clustered into bacterial enterotypes by using 194 

the method as that for bacterial enterotype.  195 

 196 

Dynamics of within-sample α diversity throughout each trimester of pregnancy 197 

This analysis was conducted in the established sub-cohort of 750 participants who had 198 

available gut fungi α diversity data for each trimester of pregnancy. We utilized 199 
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 8 

paired t-tests to assess the statistical significance of the changes in fungal α diversity 200 

between T1 and T2, as well as between T2 and T3 independently.  201 

 202 

Among the 750 participants included in the study to profile changes in gut fungal 203 

richness from T1 to T3, data on the estimation of consumption changes in food groups 204 

from T1 to T3 based on the FFQ were available for 639 participants. These food 205 

groups consisted of rice, steamed bread, noodles, vegetables, meat, eggs, milk, and 206 

fruit. The weight of each food group consumed per day was quantified based on the 207 

FFQ. We applied a linear regression model to estimate the association between the 208 

changes in richness from T1 to T3 and the respective food group. As covariates, we 209 

incorporated age, pre-pregnancy BMI, interval time between sample collections, 210 

parity, and gravidity. An FDR<0.05 was considered statistically significant.  211 

 212 

Loss rate calculations and discriminative genera identification  213 

Utilizing the available repeated measurements of gut fungi throughout pregnancy 214 

within the designated sub-cohort (n=750), we elucidated the loss rate for each fungal 215 

genus as the host underwent progression from T1 to T3. The loss rate for each fungal 216 

genus was determined by quantifying the proportion of the decline in frequency 217 

observed between T1 and T3.  218 

 219 

To assess the gut fungi enriched or depleted during early or late pregnancy, we 220 

conducted an analysis using paired t test analysis. This analysis was based on the 221 

examination of 465 genera that were detected at either T1 or T3. We transformed the 222 

taxa data using the centered log-ratio (CLR) method to address the compositional 223 

nature of the mycobiome data before we perform the paired t test analysis. To 224 

determine statistical significance, a false discovery rate (FDR)-adjusted p-value 225 

threshold of less than 0.05 was used.  226 

Additionally, we used these 465 fungal genera to construct a machine learning 227 

framework of LightGBM for predicting the trimester that the samples belong to.[5] 228 

The construction of prediction model was based on Scikit-learn (v0.15.2), and ten-229 
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fold cross validation (CV) was applied. To evaluate binary classification performance, 230 

receiver operating characteristic (ROC) curve analyses were conducted using the R 231 

package pROC. We used the SHAP (Shapley Additive exPlanations) to interpret 232 

predictions and the importance of each fungal genus to the prediction model is 233 

represented using Shapley values.[6] 234 

 235 

Quantification of intra-individual gut fungi compositional alterations  236 

We applied the vegdist function from the R package vegan to calculate the Bray-237 

Curtis distance based on gut fungal genus-level composition to assess intra-individual 238 

and inter-individual dissimilarities, respectively.[3] The sub-cohort, consisting of 750 239 

participants, was included in this analysis, as they had relevant data throughout each 240 

trimester of pregnancy. To determine the intra-individual distance, paired data was 241 

used, with the gut mycobiome data at T1 serving as the reference. Subsequently, a 242 

Bray-Curtis distance value was calculated for each participant in the sub-cohort, 243 

reflecting the extent of gut fungal compositional alterations. 244 

We fitted a multivariate regression model to examine the associations of pre-245 

pregnancy overweight status (category variable) or pre-pregnancy BMI (continuous 246 

variable, z-score transformed) with the extent of gut fungal compositional alteration 247 

within the established sub-cohort. The model was adjusted for potential confounders 248 

including age, time interval between sample collection, parity, antibiotics use and 249 

pregnancy complications. To examine the potential influence of gut fungal 250 

compositional alteration on adverse birth outcomes, multivariate regression models 251 

were constructed for preterm delivery, low birthweight, and macrosomia. The 252 

aforementioned potential confounders, along with the extent of gut fungal 253 

compositional alteration, were considered as exposure variables in these models. 254 

 255 

With regard to the divergence between individuals, the inter-individual distance was 256 

evaluated at various time points (i.e., T1, T2 or T3), separately. At each time point 257 

(e.g., T1 or T3), we calculate the average Bray-Curtis distance for each participant 258 

compared to all other participants. Thus, at each time point, each participant 259 
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 10 

possessed a distance value to reflect the similarity of her gut fungal composition with 260 

others.  261 

 262 

Dynamic trajectory of the core gut fungal genera and their relationship with host 263 

health status 264 

We conducted a longitudinal trajectory analysis for each core fungal genus in the 265 

established sub-cohort comprising 750 participants. For each core fungi, every 266 

participant had three measurements recorded at different time points, namely T1, T2, 267 

and T3. Therefore, the trajectory of a genus within an individual participant could be 268 

characterized by a vector consisting of three component values corresponding to these 269 

time points. Thereafter, we applied the vegdist function from the R package vegan to 270 

calculate the Canberra distance metric.[3] We performed PERMANOVA analysis 271 

using the function adonis2 in vegan, to assess the association of between-individual 272 

variation in the trajectory of each fungal genus with pre-pregnancy overweight status 273 

or adverse birth outcomes. The p value was determined through 999 permutations and 274 

an FDR-adjusted p value of less than 0.05 was considered indicative of statistical 275 

significance. 276 

 277 

Network analysis among gut fungal enterotype, functional pathways and host 278 

serum metabolites 279 

The network analysis was conducted among the participants who had available 280 

metagenome data during the first trimester of pregnancy. After excluding 35 281 

participants who had antibiotics exposure within 2weeks before stool sample 282 

collection, this analysis included a total of 1001 women. We firstly performed 283 

Kruskal-Wallis test to identify pathways whose distribution varied across fungal 284 

enterotypes. Thereafter, we performed post-hoc pair-wise comparison to defined 285 

which enterotype was enrich with the identified pathways. We fitted multivariate 286 

regression models to examine the associations of identified pathways with host serum 287 

metabolites. Here, we adjusted for potential confounders including age, gestation 288 

week, parity and pre-pregnancy BMI. Both the fungi and pathway data were 289 
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standardized using z-score before the regression analysis. An FDR-adjusted p value of 290 

less than 0.05 was considered indicative of statistical significance. 291 

 292 

Covarying relationship between gut fungi alterations and host metabolic changes 293 

We investigated the relationship between alterations in gut fungi and changes in host 294 

metabolism among 709 participants. These participants had available gut mycobiome 295 

sequencing data as well as serum metabolome data during each trimester of 296 

pregnancy. To address the compositional nature of the mycobiome data, we first 297 

applied the centered log-ratio (CLR) method to transform the taxa data. Next, we 298 

calculated the changes in each core fungus from T1 to T3 for each participant. 299 

Additionally, we calculated the changes in signal intensity of each serum metabolite 300 

from T1 to T3 for each participant. This enabled us to construct a matrix of gut fungi 301 

alterations and a matrix of host metabolic changes. To investigate the overall 302 

relationship between gut fungi alterations and host metabolic changes, we conducted 303 

Procrustes analysis in R using the ‘vegan’ R package. Procrustes. The p-value was 304 

generated based on 999 permutations.[3] 305 

 306 

Furthermore, we explored the covarying relationship between individual fungal 307 

genera and individual serum metabolites. For this analysis, we applied pairwise 308 

Spearman correlation analysis to each genus-serum metabolite pair in the 309 

aforementioned dataset. We considered a false discovery rate (FDR)-adjusted p-value 310 

of less than 0.05 as indicative of statistical significance. 311 

 312 

Pre-pregnancy overweight status impacts the metabolic changes during 313 

pregnancy 314 

For those participants with available serum metabolomics data throughout each 315 

trimester of pregnancy, we had constructed a matrix of host metabolic changes. Based 316 

on this matrix, the vegdist function from the R package vegan was utilized to calculate 317 

the Canberra distance metric.[3] To assess the contribution of pre-pregnancy 318 

overweight to the variation in metabolic changes between individuals, a 319 
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PERMANOVA analysis was conducted using the adonis2 function from the vegan 320 

package.[3] The significance of the results was determined using 999 permutations, 321 

and a false discovery rate (FDR)-adjusted p-value of less than 0.05 was considered 322 

statistically significant. 323 

 324 

To identify the distinct metabolic alterations in underweight and overweight pregnant 325 

women, we classified the participants into three groups based on their pre-pregnancy 326 

weight status: underweight, normal weight, and overweight/obese. Paired t-tests were 327 

conducted for each serum metabolite measured at T1 and T3 within each group. A 328 

FDR-adjusted p-value of less than 0.05 was considered statistically significant. 329 

Metabolic changes that were observed as significant solely among the underweight 330 

group, but not in the other groups, were defined as unique metabolic changes in 331 

pregnant women who were underweight prior to pregnancy. Similarly, significant 332 

metabolic changes observed solely among the overweight/obese group were defined 333 

as unique metabolic changes in pregnant women who were overweight/obese prior to 334 

pregnancy. 335 

 336 

Clinical impact of the gut mycobiome during pregnancy 337 

Logistic regression was used to evaluate the association between each core fungal 338 

genus, specifically measured during the first trimester of pregnancy, and the 339 

occurrence of pregnancy complications (GDM and PIH), as well as adverse birth 340 

outcomes (e.g., preterm delivery, macrosomia, and low birthweight). The model 341 

included age, pre-pregnancy BMI, parity as covariates. Specifically, when examining 342 

GDM or PIH as exposures, the model was adjusted for these variables. Additionally, 343 

when fungal genera were included as exposures, the fungal genera data were z-score 344 

standardized and the model was further adjusted for the gestational week 345 

corresponding to stool sample collection and the batch of sequencing. 346 

 347 

The analysis pertaining to pregnancy complications was conducted among 4606 348 

participants who possessed gut fungi sequencing data at T1 and information regarding 349 
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pregnancy complications. Likewise, the analysis concerning birth outcomes was 350 

performed among 4656 participants who had gut fungi sequencing data at T1 and 351 

information on birth outcomes. In both analyses, a complete data analysis strategy 352 

was implemented for variables with an exceptionally low occurrence of missing 353 

values, which consequently excluded 3 participants. For the variable "gestational 354 

week at stool sample collection," which was missing for 278 participants, a multiple 355 

imputation strategy was employed to impute these missing values. As a result, the 356 

logistic regression model for pregnancy complications consisted of 4603 participants, 357 

while the logistic regression model for adverse birth outcomes encompassed 4653 358 

participants. 359 

 360 

For pregnancy complications that exhibited significant associations with both gut 361 

fungi and adverse birth outcomes, we conducted mediation analysis to investigate the 362 

potential mediation effect of pregnancy complications on the link between the 363 

mycobiome and adverse birth outcomes. All statistical analyses were performed using 364 

Stata version 15 or R version 4.0.2.  365 

 366 
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Table S1: Characteristics of demographic, clinical and dietary factors stratified by early-pregnancy fungal enterotypes 

 Candida-dominated enterotype (n=907) Aspergillus-dominated enterotype (n=2723) Saccharomyces-dominated enterotype (n=1170) p* 

Age (year) 26.4 (3.6) 26.3 (3.6) 26.5 (3.5) 0.246 

Pre-pregnancy BMI 20.8 (2.9) 20.9 (2.9) 21.0 (3.1) 0.343 

Gestation week (wk) 10.2 (2.1) 10.2 (2.0) 10.1 (2.0) 0.374 

Time to delivery (day) 198.2 (16.1） 198.4 (15.5） 198.5 (15.6） 0.940 

Parity    0.013 

Primiparous 54.0% 57.3% 60.5%  

Overweight status    0.249 

Overweight or obese 21.8 19.2 19.7  

Normal weight 65.1 67.6 65.3  

Underweight 13.1 13.3 15  

Steam bread consumption    <0.001 

Ever (during the past 1 year) 46.9% 47.3% 54.2%  

Drinking     0.070 

Ever (during the past 1 year) 22.4% 22.0% 18.9%  

Tea consumption    0.024 

Ever (during the past 1 year) 34.0% 33.7% 29.5%  

Coffee consumption    0.057 

Ever (during the past 1 year) 24.6% 26.6% 23.1%  

Milk consumption    0.564 

never 19.2% 21.0% 19.7%  

<1 / day 42.9% 42.9% 42.1%  

≥1/day 38.0% 36.1% 38.2%  

* One-way ANOVA was applied to examine the significance of difference between groups for continuous variables, while chi-square test was 

used for category variables. 
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Table S2. The association between changes in consumption of food groups during pregnancy and alterations in gut fungal richness* 

Exposure (changes in consumption of food groups) Beta coefficient 95% CI p FDR 

Rice (per 50g/day) -3.20 (-5.75, -0.64) 0.014 0.11 

Steamed bread (per 1 bread/day) -6.38 (-12.9, 0.14) 0.055 0.15 

Noodle (per 50g/day) -5.06 (-10.63, 0.50) 0.074 0.15 

Vegetables (per 50g/day) 1.20 (-9.82, 3.22) 0.243 0.39 

Meat (per 50g/day) 1.45 (-3.48, 6.37) 0.564 0.64 

Egg (per 1 egg/day) 7.33 (0.26, 14.41) 0.042 0.15 

Milk (per 50g/day) 0.01 (-0.01, 0.03) 0.51 0.64 

Fruit (per 50g/day) -0.30 (-1.89, 1.29) 0.712 0.71 

* Covariates included in the regression model: age, pre-pregnancy BMI, interval time between sample collections, parity, and gravidity. 

639 out of the 750 with available data on the estimation of consumption changes in food groups from T1 to T3 based on the FFQ were included.  
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